The coronavirus disease 2019 (COVID-19) pandemic challenged the workings of human society, but in doing so, it advanced our understanding of the ecology and evolution of infectious diseases. Fluctuating transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrated the highly dynamic nature of human social behavior, often without government intervention. Evolution of SARS-CoV-2 in the first two years following spillover resulted primarily in increased transmissibility, while in the third year, the globally dominant virus variants had all evolved substantial immune evasion. The combination of viral evolution and the buildup of host immunity through vaccination and infection greatly decreased the realized virulence of SARS-CoV-2 due to the age dependence of disease severity. The COVID-19 pandemic was exacerbated by presymptomatic, asymptomatic, and highly heterogeneous transmission, as well as highly variable disease severity and the broad host range of SARS-CoV-2. Insights and tools developed during the COVID-19 pandemic could provide a stronger scientific basis for preventing, mitigating, and controlling future pandemics.
more »
« less
SARS-CoV-2 Is Not Special, but the Pandemic Is: The Ecology, Evolution, Policy, and Future of the Deadliest Pandemic in Living Memory
The COVID-19 pandemic is extraordinary, but many ordinary events have contributed to its becoming and persistence. Here, we argue that the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which has radically altered day-to-day life for people across the globe, was an inevitability of contemporary human ecology, presaged by spillovers past. We show the ways in which the emergence of this virus reiterates other infectious disease crises, from its origin via habitat encroachment and animal use by humans to its evolution of troublesome features, and we spotlight a long-running crisis of inequitable infectious disease incidence and death. We conclude by describing aspects of SARS-CoV-2 and the COVID-19 pandemic that present opportunities for disease control: spaces for intervention in infection and recovery that reduce transmission and impact. There are no more “before times”; therefore, we encourage embracing a future using old mitigation tactics and government support for ongoing disease control.
more »
« less
- Award ID(s):
- 1750675
- PAR ID:
- 10469148
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Anthropology
- Volume:
- 51
- Issue:
- 1
- ISSN:
- 0084-6570
- Page Range / eLocation ID:
- 527 to 548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses.more » « less
-
The emergence of new variants of the SARS-CoV-2 virus poses serious problems to the control of the current COVID-19 pandemic. Understanding how the variants originate is critical for effective control of the spread of the virus and the global pandemic. The study of the virus evolution so far has been dominated by phylogenetic tree analysis, which however is inappropriate for a few important reasons. Here we used phylogenetic network approach to study the origin of the VOC202012/01 (Alpha) or so-called UK variant (PANGO Lineage B.1.1.7). The multiple network analyses using different methods consistently revealed that the VOC202012/01 variant was a result of recombination, in contrast to the common assumption that the variant evolved from step-wise mutations in a linear order. The study provides an example for the power and application of phylogenetic network analysis in studying virus evolution, which can be applied to study the evolutionary processes leading to the emergence of other variants of the SARS-CoV-2 virus as well as many other viruses.more » « less
-
Appearing at the end of 2019, a novel virus (later identified as SARS-CoV-2) was characterized in the city of Wuhan in Hubei Province, China. As of the time of writing, the disease caused by this virus (known as COVID-19) has already resulted in over three million deaths worldwide. SARS-CoV-2 infections and deaths, however, have been highly unevenly distributed among age groups, sexes, countries, and jurisdictions over the course of the pandemic. Herein, I present a tool (the covid19.Explorer R package and web application) that has been designed to explore and analyze publicly available United States COVID-19 infection and death data from the 2020/21 U.S. SARS-CoV-2 pandemic. The analyses and visualizations that this R package and web application facilitate can help users better comprehend the geographic progress of the pandemic, the effectiveness of non-pharmaceutical interventions (such as lockdowns and other measures, which have varied widely among U.S. states), and the relative risks posed by COVID-19 to different age groups within the U.S. population. The end result is an interactive tool that will help its users develop an improved understanding of the temporal and geographic dynamics of the SARS-CoV-2 pandemic, accessible to lay people and scientists alike.more » « less
-
At the end of 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel human coronavirus, emerged and rapidly caused a global pandemic. SARS-CoV-2 is the causative agent of coronavirus disease 2019 (COVID-19), which affects the respiratory tract and lungs of infected individuals. Due to the increased transmissibility of the SARS-CoV-2 virus compared to its previous versions, determining as fully as possible the various structural aspects of the virus became critical for the development of therapeutics and vaccines to combat this virus. Knowing the structures of viral proteins and their glycosylation is an essential foundation for the understanding of the mechanism of the disease. Glycopeptide analysis has been used to map the glycosylation of viral glycoproteins, including those of influenza and HIV. Thanks to the developments in the field over the last few decades, scientists were able to quickly develop therapeutics against SARS-CoV-2. This chapter discusses the four structural proteins of SARS-CoV-2, their glycosylation and modifications, and the techniques used to map SARS-CoV-2 glycosylation.more » « less
An official website of the United States government

