skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genomic profiling and spatial SEIR modeling of COVID-19 transmission in Western New York
The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses.  more » « less
Award ID(s):
2200173
PAR ID:
10630441
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Microbiology
Edition / Version:
1
Volume:
15
ISSN:
1664-302X
Format(s):
Medium: X Size: 5.9 MB Other: pdf
Size(s):
5.9 MB
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As COVID-19 continues to pose significant public health threats, quantifying the effectiveness of different public health interventions is crucial to inform intervention strategies. Using detailed epidemiological and mobility data available for New York City and comprehensive modelling accounting for under-detection, we reconstruct the COVID-19 transmission dynamics therein during the 2020 spring pandemic wave and estimate the effectiveness of two major non-pharmaceutical interventions—lockdown-like measures that reduce contact rates and universal masking. Lockdown-like measures were associated with greater than 50% transmission reduction for all age groups. Universal masking was associated with an approximately 7% transmission reduction overall and up to 20% reduction for 65+ year olds during the first month of implementation. This result suggests that face covering can substantially reduce transmission when lockdown-like measures are lifted but by itself may be insufficient to control SARS-CoV-2 transmission. Overall, findings support the need to implement multiple interventions simultaneously to effectively mitigate COVID-19 spread before the majority of population can be protected through mass-vaccination. 
    more » « less
  2. Background Understanding community transmission of SARS-CoV-2 variants of concern (VOCs) is critical for disease control in the post pandemic era. The Delta variant (B.1.617.2) emerged in late 2020 and became the dominant VOC globally in the summer of 2021. While the epidemiological features of the Delta variant have been extensively studied, how those characteristics shaped community transmission in urban settings remains poorly understood. Methods Using high-resolution contact tracing data and testing records, we analyze the transmission of SARS-CoV-2 during the Delta wave within New York City (NYC) from May 2021 to October 2021. We reconstruct transmission networks at the individual level and across 177 ZIP code areas, examine network structure and spatial spread patterns, and use statistical analysis to estimate the effects of factors associated with COVID-19 spread. Results We find considerable individual variations in reported contacts and secondary infections, consistent with the pre-Delta period. Compared with earlier waves, Delta-period has more frequent long-range transmission events across ZIP codes. Using socioeconomic, mobility and COVID-19 surveillance data at the ZIP code level, we find that a larger number of cumulative cases in a ZIP code area is associated with reduced within- and cross-ZIP code transmission and the number of visitors to each ZIP code is positively associated with the number of non-household infections identified through contact tracing and testing. Conclusions The Delta variant produced greater long-range spatial transmission across NYC ZIP code areas, likely caused by its increased transmissibility and elevated human mobility during the study period. Our findings highlight the potential role of population immunity in reducing transmission of VOCs. Quantifying variability of immunity is critical for identifying subpopulations susceptible to future VOCs. In addition, non-pharmaceutical interventions limiting human mobility likely reduced SARS-CoV-2 spread over successive pandemic waves and should be encouraged for reducing transmission of future VOCs. 
    more » « less
  3. Abstract Understanding SARS-CoV-2 transmission within and among communities is critical for tailoring public health policies to local context. However, analysis of community transmission is challenging due to a lack of high-resolution surveillance and testing data. Here, using contact tracing records for 644,029 cases and their contacts in New York City during the second pandemic wave, we provide a detailed characterization of the operational performance of contact tracing and reconstruct exposure and transmission networks at individual and ZIP code scales. We find considerable heterogeneity in reported close contacts and secondary infections and evidence of extensive transmission across ZIP code areas. Our analysis reveals the spatial pattern of SARS-CoV-2 spread and communities that are tightly interconnected by exposure and transmission. We find that locations with higher vaccination coverage and lower numbers of visitors to points-of-interest had reduced within- and cross-ZIP code transmission events, highlighting potential measures for curtailing SARS-CoV-2 spread in urban settings. 
    more » « less
  4. null (Ed.)
    Abstract In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin–angiotensin–aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies. 
    more » « less
  5. The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to impact the United States. While age and comorbid health conditions remain primary concerns in the community-based transmission of the virus, empirical evidence continues to suggest that substantial variability exists in the geographic and geodemographic distribution of COVID-19 infection rates. The purpose of this paper is to provide an alternative, spatiotemporal perspective on the pandemic using the state of Wisconsin as a case study. Specifically, in this paper, we explore the geographic nuances of COVID-19 and its spread in Wisconsin using a suite of spatial statistical approaches. We link detected hot spots of COVID-19 to local geodemographic profiles and the presence of high-risk facilities, including federal and state correctional facilities. The results suggest that the virus disproportionately impacts several communities and geodemographic groups and that proximity to risky facilities correlates to increased community infection rates. 
    more » « less