Abstract The global spread of COVID-19, the disease caused by the novel coronavirus SARS-CoV-2, has casted a significant threat to mankind. As the COVID-19 situation continues to evolve, predicting localized disease severity is crucial for advanced resource allocation. This paper proposes a method named COURAGE (COUnty aggRegation mixup AuGmEntation) to generate a short-term prediction of 2-week-ahead COVID-19 related deaths for each county in the United States, leveraging modern deep learning techniques. Specifically, our method adopts a self-attention model from Natural Language Processing, known as the transformer model, to capture both short-term and long-term dependencies within the time series while enjoying computational efficiency. Our model solely utilizes publicly available information for COVID-19 related confirmed cases, deaths, community mobility trends and demographic information, and can produce state-level predictions as an aggregation of the corresponding county-level predictions. Our numerical experiments demonstrate that our model achieves the state-of-the-art performance among the publicly available benchmark models.
more »
« less
County augmented transformer for COVID-19 state hospitalizations prediction
Abstract The prolonged COVID-19 pandemic has tied up significant medical resources, and its management poses a challenge for the public health care decision making. Accurate predictions of the hospitalizations are crucial for the decision makers to make informed decision for the medical resource allocation. This paper proposes a method named County Augmented Transformer (CAT). To generate accurate predictions of four-week-ahead COVID-19 related hospitalizations for every states in the United States. Inspired by the modern deep learning techniques, our method is based on a self-attention model (known as the transformer model) that is actively used in Natural Language Processing. Our transformer based model can capture both short-term and long-term dependencies within the time series while enjoying computational efficiency. Our model is a data based approach that utilizes the publicly available information including the COVID-19 related number of confirmed cases, deaths, hospitalizations data, and the household median income data. Our numerical experiments demonstrate the strength and the usability of our model as a potential tool for assisting the medical resources allocation.
more »
« less
- Award ID(s):
- 2008334
- PAR ID:
- 10469187
- Publisher / Repository:
- Scientific Reports
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub ( https://covid19forecasthub.org/ ) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.more » « less
-
Abstract The strain on healthcare resources brought forth by the recent COVID-19 pandemic has highlighted the need for efficient resource planning and allocation through the prediction of future consumption. Machine learning can predict resource utilization such as the need for hospitalization based on past medical data stored in electronic medical records (EMR). We conducted this study on 3194 patients (46% male with mean age 56.7 (±16.8), 56% African American, 7% Hispanic) flagged as COVID-19 positive cases in 12 centers under Emory Healthcare network from February 2020 to September 2020, to assess whether a COVID-19 positive patient’s need for hospitalization can be predicted at the time of RT-PCR test using the EMR data prior to the test. Five main modalities of EMR, i.e., demographics, medication, past medical procedures, comorbidities, and laboratory results, were used as features for predictive modeling, both individually and fused together using late, middle, and early fusion. Models were evaluated in terms of precision, recall, F1-score (within 95% confidence interval). The early fusion model is the most effective predictor with 84% overall F1-score [CI 82.1–86.1]. The predictive performance of the model drops by 6 % when using recent clinical data while omitting the long-term medical history. Feature importance analysis indicates that history of cardiovascular disease, emergency room visits in the past year prior to testing, and demographic factors are predictive of the disease trajectory. We conclude that fusion modeling using medical history and current treatment data can forecast the need for hospitalization for patients infected with COVID-19 at the time of the RT-PCR test.more » « less
-
Abstract More than half of the coronavirus disease 19 (COVID-19) related mortality rates in the United States and Europe are associated with long-term-care facilities (LTCFs) such as old-age organizations, nursing homes, and disability centers. These facilities are considered most vulnerable to spread of an pandemic like COVID-19 because of multiple reasons including high density of elderly population with a diverse range of medical requirements, limited resources, nursing activities/medications, and the role of external visitors. In this study, we aim to understand the role of visitor’s family members and specific interventions (such as use of face masks and restriction of visiting hours) on the dynamics of infection in a community using a mathematical model. The model considers two types of social contexts (community and LTCFs) with three different groups of interacting populations (non-mobile community individuals, mobile community individuals, and long-term facility residents). The goal of this work is to compare the outbreak burden between different centre of disease control (CDC) planning scenarios, which capture distinct types of intensity of diseases spread in LTCF observed during COVID-19 outbreak. The movement of community mobile members is captured via their average relative times in and out of the long-term facilities to understand the strategies that would work well in these facilities the CDC planning scenarios. Our results suggest that heterogeneous mixing worsens epidemic scenario as compared to homogeneous mixing and the epidemic burden is hundreds times greater for community spread than within the facility population.more » « less
-
Abstract We propose a piecewise linear quantile trend model to analyse the trajectory of the COVID-19 daily new cases (i.e. the infection curve) simultaneously across multiple quantiles. The model is intuitive, interpretable and naturally captures the phase transitions of the epidemic growth rate via change-points. Unlike the mean trend model and least squares estimation, our quantile-based approach is robust to outliers, captures heteroscedasticity (commonly exhibited by COVID-19 infection curves) and automatically delivers both point and interval forecasts with minimal assumptions. Building on a self-normalized (SN) test statistic, this paper proposes a novel segmentation algorithm for multiple change-point estimation. Theoretical guarantees such as segmentation consistency are established under mild and verifiable assumptions. Using the proposed method, we analyse the COVID-19 infection curves in 35 major countries and discover patterns with potentially relevant implications for effectiveness of the pandemic responses by different countries. A simple change-adaptive two-stage forecasting scheme is further designed to generate short-term prediction of COVID-19 cumulative new cases and is shown to deliver accurate forecast valuable to public health decision-making.more » « less