The multiple immunity responses exhibited in the population and co-circulating variants documented during pandemics show a high potential to generate diverse long-term epidemiological scenarios. Transmission variability, immune uncertainties and human behaviour are crucial features for the predictability and implementation of effective mitigation strategies. Nonetheless, the effects of individual health incentives on disease dynamics are not well understood. We use a behavioural-immuno-epidemiological model to study the joint evolution of human behaviour and epidemic dynamics for different immunity scenarios. Our results reveal a trade-off between the individuals’ immunity levels and the behavioural responses produced. We find that adaptive human behaviour can avoid dynamical resonance by avoiding large outbreaks, producing subsequent uniform outbreaks. Our forward-looking behaviour model shows an optimal planning horizon that minimizes the epidemic burden by balancing the individual risk–benefit trade-off. We find that adaptive human behaviour can compensate for differential immunity levels, equalizing the epidemic dynamics for scenarios with diverse underlying immunity landscapes. Our model can adequately capture complex empirical behavioural dynamics observed during pandemics. We tested our model for different US states during the COVID-19 pandemic. Finally, we explored extensions of our modelling framework that incorporate the effects of lockdowns, the emergence of a novel variant, prosocial attitudes and pandemic fatigue.
more »
« less
Influence of distinct social contexts of long-term care facilities on the dynamics of spread of COVID-19 under predefine epidemiological scenarios
Abstract More than half of the coronavirus disease 19 (COVID-19) related mortality rates in the United States and Europe are associated with long-term-care facilities (LTCFs) such as old-age organizations, nursing homes, and disability centers. These facilities are considered most vulnerable to spread of an pandemic like COVID-19 because of multiple reasons including high density of elderly population with a diverse range of medical requirements, limited resources, nursing activities/medications, and the role of external visitors. In this study, we aim to understand the role of visitor’s family members and specific interventions (such as use of face masks and restriction of visiting hours) on the dynamics of infection in a community using a mathematical model. The model considers two types of social contexts (community and LTCFs) with three different groups of interacting populations (non-mobile community individuals, mobile community individuals, and long-term facility residents). The goal of this work is to compare the outbreak burden between different centre of disease control (CDC) planning scenarios, which capture distinct types of intensity of diseases spread in LTCF observed during COVID-19 outbreak. The movement of community mobile members is captured via their average relative times in and out of the long-term facilities to understand the strategies that would work well in these facilities the CDC planning scenarios. Our results suggest that heterogeneous mixing worsens epidemic scenario as compared to homogeneous mixing and the epidemic burden is hundreds times greater for community spread than within the facility population.
more »
« less
- Award ID(s):
- 2230117
- PAR ID:
- 10535751
- Publisher / Repository:
- De Gruyter
- Date Published:
- Journal Name:
- Computational and Mathematical Biophysics
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2544-7297
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Jose L. Domingo (Ed.)Spreading patterns of the coronavirus disease (COVID-19) showed that infected and asymptotic carriers both played critical role in escalating transmission of virus leading to global pandemic. Indoor environments of res- taurants, classrooms, hospitals, offices, large assemblies, and industrial installations are susceptible to virus outbreak. Industrial facilities such as fabrication rooms of meat processing plants, which are laden with moisture and fat in indoor air are the most sensitive spaces. Fabrication room workers standing next to each other are exposed to the risk of long-range viral droplets transmission within the facility. An asymptomatic carrier may transmit the virus unintentionally to fellow workers through sporadic sneezing leading to community spread. A novel Computational Fluid Dynamics (CFD) model of a fabrication room with typical interior (stationary objects) was prepared and investigated. Study was conducted to identify indoor airflow patterns, droplets spreading patterns, leading droplets removal mechanism, locations causing maximum spread of droplets, and infection index for workers along with stationary objects in reference to seven sneeze locations covering the entire room. The role of condensers, exhaust fans and leakage of indoor air through large and small openings to other rooms was investigated. This comprehensive study presents flow scenarios in the facility and helps identify locations that are potentially at lower or higher risk for exposure to COVID-19. The results presented in this study are suitable for future engineering analyses aimed at redesigning public spaces and common areas to minimize the spread of aerosols and droplets that may contain pathogens.more » « less
-
Abstract Background Coronavirus Disease 2019 (COVID-19) led to pandemic that affected almost all countries in the world. Many countries have implemented border restriction as a public health measure to limit local outbreak. However, there is inadequate scientific data to support such a practice, especially in the presence of an established local transmission of the disease. Objective To apply a metapopulation Susceptible-Exposed-Infectious-Recovered (SEIR) model with inspected migration to investigate the effect of border restriction as a public health measure to limit outbreak of coronavirus disease 2019. Methods We apply a modified metapopulation SEIR model with inspected migration with simulating population migration, and incorporating parameters such as efficiency of custom inspection in blocking infected travelers in the model. The population sizes were retrieved from government reports, while the number of COVID-19 patients were retrieved from Hong Kong Department of Health and China Centre for Disease Control (CDC) data. The R 0 was obtained from previous clinical studies. Results Complete border closure can help to reduce the cumulative COVID-19 case number and mortality in Hong Kong by 13.99% and 13.98% respectively. To prevent full occupancy of isolation facilities in Hong Kong; effective public health measures to reduce local R 0 to below 1.6 was necessary, apart from having complete border closure. Conclusions Early complete travel restriction is effective in reducing cumulative cases and mortality. However, additional anti-COVID-19 measures to reduce local R 0 to below 1.6 are necessary to prevent COVID-19 cases from overwhelming hospital isolation facilities.more » « less
-
Since its outbreak in December 2019, the novel coronavirus 2019 (COVID-19) has spread to 191 countries and caused millions of deaths. Many countries have experienced multiple epidemic waves and faced containment pressures from both domestic and international transmission. In this study, we conduct a multiscale geographic analysis of the spread of COVID-19 in a policy-influenced dynamic network to quantify COVID-19 importation risk under different policy scenarios using evidence from China. Our spatial dynamic panel data (SDPD) model explicitly distinguishes the effects of travel flows from the effects of transmissibility within cities, across cities, and across national borders. We find that within-city transmission was the dominant transmission mechanism in China at the beginning of the outbreak and that all domestic transmission mechanisms were muted or significantly weakened before importation posed a threat. We identify effective containment policies by matching the change points of domestic and importation transmissibility parameters to the timing of various interventions. Our simulations suggest that importation risk is limited when domestic transmission is under control, but that cumulative cases would have been almost 13 times higher if domestic transmissibility had resurged to its precontainment level after importation and 32 times higher if domestic transmissibility had remained at its precontainment level since the outbreak. Our findings provide practical insights into infectious disease containment and call for collaborative and coordinated global suppression efforts.more » « less
-
Abstract Individuals’ socio-demographic and economic characteristics crucially shape the spread of an epidemic by largely determining the exposure level to the virus and the severity of the disease for those who got infected. While the complex interplay between individual characteristics and epidemic dynamics is widely recognised, traditional mathematical models often overlook these factors. In this study, we examine two important aspects of human behaviour relevant to epidemics: contact patterns and vaccination uptake. Using data collected during the COVID-19 pandemic in Hungary, we first identify the dimensions along which individuals exhibit the greatest variation in their contact patterns and vaccination uptake. We find that generally higher socio-economic groups of the population have a higher number of contacts and a higher vaccination uptake with respect to disadvantaged groups. Subsequently, we propose a data-driven epidemiological model that incorporates these behavioural differences. Finally, we apply our model to analyse the fourth wave of COVID-19 in Hungary, providing valuable insights into real-world scenarios. By bridging the gap between individual characteristics and epidemic spread, our research contributes to a more comprehensive understanding of disease dynamics and informs effective public health strategies.more » « less