Marine crustaceans produce broadband sounds that have been mostly characterized in tanks. While tank physical impacts on such signals are documented in the acoustic community, they are overlooked in the bioacoustic literature with limited empirical comparisons. Here, we compared broadband sounds produced at 1 m from spiny lobsters (Panulirus argus) in both tank and in situ conditions. We found significant differences in all sound features (temporal, power, and spectral) between tank and in situ recordings, highlighting that broadband sounds, such as those produced by marine crustaceans, cannot be accurately characterized in tanks. We then explained the three main physical impacts that distort broadband sounds in tanks, respectively known as resonant frequencies, sound reverberation, and low frequency attenuation. Tank resonant frequencies strongly distort the spectral shape of broadband sounds. In the high frequency band (above the tank minimum resonant frequency), reverberation increases sound duration. In the low frequency band (below the tank minimum resonant frequency), low frequencies are highly attenuated due to their longer wavelength compared to the tank size and tank wall boundary conditions (zero pressure) that prevent them from being accurately measured. Taken together, these results highlight the importance of understanding tank physical impacts when characterizing broadband crustacean sounds.
more »
« less
Broadband acoustic attenuation in microperforated meta-shells with ventilation
Achieving sound attenuation across a broad frequency range while maintaining adequate ventilation remains a significant challenge in acoustic engineering, as there exists a rigid trade-off between attenuation ability and ventilation. In this Letter, we propose a double-layered microperforated meta-shells to serve as broadband acoustic ventilation barrier. Multiple scattering theory is first employed to characterize sound attenuation performance of the proposed design in terms of both sound absorption and transmission loss, which is not reported before. Experimental result demonstrates a good enhancement of absorption due to the insertion of inner shell with a specific perforation rate of micro cores. The mechanism can be attributed to the inter-cell coupling, which is further utilized to devise a different configuration by wrapping the meta-shell with porous sponge. It is found that adding an extra layer of sponge can further improve the low-frequency attenuation performance. The proposed broadband sound barrier with effective ventilation can find potential applications in architectural acoustics and office noise insulation.
more »
« less
- Award ID(s):
- 1930873
- PAR ID:
- 10469201
- Publisher / Repository:
- AIP publishing
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 122
- Issue:
- 23
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metals are excellent conductors for phonon transportation such as vibration, sound, and heat. Generally, metal sound insulators require multimaterial structure or defects and unimetal sound insulators are challenging. Therefore, a design of a defect‐free sound insulator made by single alloys with multiple friction stir processes (FSPs) is proposed. Periodic friction stir processing can induce superlattice‐like local mechanical properties’ modifications. By experimental acoustic characterization, it is observed that FSP can introduce clear acoustic–elastic property contrast on an aluminum plate by the presence of stir zone and heat‐affected zones. In numerical simulations, the signature FSP‐induced property profile is periodically and parallelly arranged on a long aluminum plate. The transmission gap frequencies are present on the frequency spectrum with the sound propagation direction perpendicular to the FSP paths. Disorder offsets on FSP periodicity are further introduced. Anderson localization is found on a resonance frequency, which provides −11 dB sound reduction by an exponential decay. Due to the finite design length, the slight disorder can also enhance sound insulation in the periodic transmission gap frequency. With analysis and comparison with different configurations, the best performance in the models can achieve −30 dB sound insulation in the 350 mm‐long aluminum alloy plate with 14 parallel FSPs.more » « less
-
Sound attenuation in low-temperature amorphous solids originates from their disordered structure. However, its detailed mechanism is still being debated. Here, we analyze sound attenuation starting directly from the microscopic equations of motion. We derive an exact expression for the zero-temperature sound damping coefficient. We verify that the sound damping coefficients calculated from our expression agree very well with results from independent simulations of sound attenuation. Small wavevector analysis of our expression shows that sound attenuation is primarily determined by the non-affine displacements’ contribution to the sound wave propagation coefficient coming from the frequency shell of the sound wave. Our expression involves only quantities that pertain to solids’ static configurations. It can be used to evaluate the low-temperature sound damping coefficients without directly simulating sound attenuation.more » « less
-
null (Ed.)An acoustic metamaterial superlattice is used for the spatial and spectral deconvolution of a broadband acoustic pulse into narrowband signals with different central frequencies. The operating frequency range is located on the second transmission band of the superlattice. The decomposition of the broadband pulse was achieved by the frequency-dependent refraction angle in the superlattice. The refracted angle within the acoustic superlattice was larger at higher operating frequency and verified by numerical calculated and experimental mapped sound fields between the layers. The spatial dispersion and the spectral decomposition of a broadband pulse were studied using lateral position-dependent frequency spectra experimentally with and without the superlattice structure along the direction of the propagating acoustic wave. In the absence of the superlattice, the acoustic propagation was influenced by the usual divergence of the beam, and the frequency spectrum was unaffected. The decomposition of the broadband wave in the superlattice’s presence was measured by two-dimensional spatial mapping of the acoustic spectra along the superlattice’s in-plane direction to characterize the propagation of the beam through the crystal. About 80% of the frequency range of the second transmission band showed exceptional performance on decomposition.more » « less
-
Acoustic energy harvesters (AEHs) open up opportunities to recycle noise waste and generate electricity. They provide potential power solutions to a wide range of sensors. However, the practicality of AEHs has long been limited by their narrow bandwidths and low efficiencies. In this study, we present an ultra-broadband AEH and a highly efficient AEH that transforms sound energy into usable electrical power. Our broadband device comprises an electrodynamic loudspeaker driver and an optimized acoustic metamaterial matching layer and is capable of converting 7.6% to 15.1% of total incident sound energy from 50 to 228 Hz. Moreover, we demonstrate that by replacing the loudspeaker surround with a lower-loss material such as PDMS, the energy conversion rate can be significantly increased to 67%. The proposed broadband AEH has a fractional bandwidth eight times the state-of-the-art, while the proposed highly efficient AEH has a peak efficiency three times the state-of-the-art. The outstanding performance makes our designs cost-effective and scalable solutions for noise reduction and power generation.more » « less