Achieving sound attenuation across a broad frequency range while maintaining adequate ventilation remains a significant challenge in acoustic engineering, as there exists a rigid trade-off between attenuation ability and ventilation. In this Letter, we propose a double-layered microperforated meta-shells to serve as broadband acoustic ventilation barrier. Multiple scattering theory is first employed to characterize sound attenuation performance of the proposed design in terms of both sound absorption and transmission loss, which is not reported before. Experimental result demonstrates a good enhancement of absorption due to the insertion of inner shell with a specific perforation rate of micro cores. The mechanism can be attributed to the inter-cell coupling, which is further utilized to devise a different configuration by wrapping the meta-shell with porous sponge. It is found that adding an extra layer of sponge can further improve the low-frequency attenuation performance. The proposed broadband sound barrier with effective ventilation can find potential applications in architectural acoustics and office noise insulation.
more »
« less
Defect‐Free Sound Insulator Using Single Metal‐Based Friction Stir Process Array
Metals are excellent conductors for phonon transportation such as vibration, sound, and heat. Generally, metal sound insulators require multimaterial structure or defects and unimetal sound insulators are challenging. Therefore, a design of a defect‐free sound insulator made by single alloys with multiple friction stir processes (FSPs) is proposed. Periodic friction stir processing can induce superlattice‐like local mechanical properties’ modifications. By experimental acoustic characterization, it is observed that FSP can introduce clear acoustic–elastic property contrast on an aluminum plate by the presence of stir zone and heat‐affected zones. In numerical simulations, the signature FSP‐induced property profile is periodically and parallelly arranged on a long aluminum plate. The transmission gap frequencies are present on the frequency spectrum with the sound propagation direction perpendicular to the FSP paths. Disorder offsets on FSP periodicity are further introduced. Anderson localization is found on a resonance frequency, which provides −11 dB sound reduction by an exponential decay. Due to the finite design length, the slight disorder can also enhance sound insulation in the periodic transmission gap frequency. With analysis and comparison with different configurations, the best performance in the models can achieve −30 dB sound insulation in the 350 mm‐long aluminum alloy plate with 14 parallel FSPs.
more »
« less
- Award ID(s):
- 1741677
- PAR ID:
- 10430600
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 25
- Issue:
- 19
- ISSN:
- 1438-1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The existing concepts of non-reciprocity in propagation of acoustic or elastic waves are based either on nonlinear effects, or on local circulation of linear elastic fluid that leads to red or blue Doppler shift, depending on the direction of sound wave. The same concepts exist for electromagnetic non-reciprocity, where external magnetic field may produce the effect similar to local rotation of the medium. These two concepts originate from two known methods of breaking a time-reversal symmetry (T-symmetry), that is necessary for observation of nonreciprocal wave propagation. Both concepts require additional electrical or mechanical devices to be installed with their own power sources. Here we propose to explore viscosity of fluid as a natural factor of the T-symmetry breaking through energy dissipation. We report experimental observation of the nonreciprocal transmission of ultrasound through a water-submerged phononic crystals consisting of several layers of aluminum rods arranged in a square lattice. While viscous losses break the T-symmetry, making the wave propagation thermodynamically irreversible, the transmission remains reciprocal if the scatterers are symmetrical. To generate different energy losses for opposite directions of propagation, the P-symmetry of the crystal is broken by using asymmetric scatterers. Due to asymmetry, two sound waves propagating in the opposite directions produce different distributions of velocity and pressure that leads to different local absorption. Dissipation of acoustic energy occurs mostly near the surface of the scatterers and it strongly depends on surface roughnesses. Using two phononic crystal with smooth and rough aluminum rods we demonstrate low (2-5 dB) and high (10-15 dB) level of non-reciprocity within a wide range of frequencies, 300-600 kHz. Experimental results are in agreement with numerical simulations based on the Navier-Stokes equation. This nonreciprocal linear device is very cheap, robust and does not require energy source.more » « less
-
The observation of 1 / B -periodic behavior in Kondo insulators and semiconductor quantum wells challenges the conventional wisdom that quantum oscillations (QOs) necessarily arise from Fermi surfaces in metals. We revisit recently proposed theories for this phenomenon, focusing on a minimal model of an insulator with a hybridization gap between two opposite-parity light and heavy mass bands with an inverted band structure. We show that there are characteristic differences between the QO frequencies in the magnetization and the low-energy density of states (LE-DOS) of these insulators, in marked contrast to metals where all observables exhibit oscillations at the same frequency. The magnetization oscillations arising from occupied Landau levels occur at the same frequency that would exist in the unhybridized case. The LE-DOS oscillations in a disorder-free system are dominated by gap-edge states and exhibit a beat pattern between two distinct frequencies at low temperature. Disorder-induced in-gap states lead to an additional contribution to the DOS at the unhybridized frequency. The temperature dependence of the amplitude and phase of the magnetization and DOS oscillations are also qualitatively different and show marked deviations from the Lifshitz–Kosevich form well known in metals. We also compute transport to ensure that we are probing a regime with insulating upturns in the direct current (DC) resistivity.more » « less
-
The acoustic and aerodynamic fields of blunt porous plates are examined experimentally in an effort to mitigate trailing-edge bluntness noise. The plates are characterized by a single dimensionless porosity parameter identified in previous works that controls the influence of porosity on the sound field. Hot-wire anemometry interrogates the velocity field to connect turbulence details of specific regions to flow noise directivity and beamforming source maps. Porous plates are demonstrated to reduce the bluntness-induced noise by up to 17 dB and progressively suppress broadband low-frequency noise as the value of the porosity parameter increases. However, an increase in this parameter also increases the high-frequency noise created by the pores themselves. The same highly perforated plate characterized by a large value of the porosity parameter reduces the bluntness-induced vortex shedding that is present in the wake of the impermeable plate. Lastly, pore shape and positional alignment are shown to have a complex effect on the acoustic field. Among the porosity designs considered, plates with circular pores are most effective for low-frequency noise reductions but generate high-frequency noise. No meaningful difference is found between the acoustic spectra from plates of the same open-area fraction with pores aligned along or staggered about the flow direction.more » « less
-
null (Ed.)Abstract The efficacy of animal acoustic communication depends on signal transmission through an oft-cluttered environment. Anthropogenic-induced changes in vegetation may affect sound propagation and thus habitat quality, but few studies have explored this hypothesis. In the southwestern United States, fire suppression and cattle grazing have facilitated displacement of grasslands by pinyon-juniper woodlands. Northern grasshopper mice ( Onychomys leucogaster ) inhabit regions impacted by juniper encroachment and produce long-distance vocalizations to advertise their presence to conspecifics. In this study, we coupled acoustic recordings and electrophysiological measurements of hearing sensitivity from wild mice in the laboratory with sound transmission experiments of synthesized calls in the field to estimate the active space (maximum distance that stimuli are detected) of grasshopper mouse vocalizations. We found that mice can detect loud (85 dB SPL at 1 m) 11.6 kHz vocalizations at 28 dB SPL. Sound transmission experiments revealed that signal active space is approximately 50 m. However, we found no effect of woody plant encroachment on call propagation because juniper and woody plant density were inversely associated and both present barriers to a 9 cm mouse advertising at ground level. Our data indicate that woody plant encroachment does not directly impact the efficacy of grasshopper mouse communication, but vegetation shifts may negatively impact mice via alternative mechanisms. Identifying the maximum distance that vocalizations function provides an important metric to understand the ecological context of species-specific signalling and potential responses to environmental change.more » « less