skip to main content


This content will become publicly available on August 28, 2024

Title: DINOMO: An Elastic, Scalable, High-Performance Key-Value Store for Disaggregated Persistent Memory
We present Dinomo, a novel key-value store for disaggregated persistent memory (DPM). Dinomo is the first key-value store for DPM that simultaneously achieves high common-case performance, scalability, and lightweight online reconfiguration. We observe that previously proposed key-value stores for DPM had architectural limitations that prevent them from achieving all three goals simultaneously. Dinomo uses a novel combination of techniques such as ownership partitioning, disaggregated adaptive caching, selective replication, and lock-free and log-free indexing to achieve these goals. Compared to a state-of-the-art DPM key-value store, Dinomo achieves at least 3.8× better throughput at scale on various workloads and higher scalability, while providing fast reconfiguration.  more » « less
Award ID(s):
1751277
NSF-PAR ID:
10469317
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
VLDB
Date Published:
Format(s):
Medium: X
Location:
Vancouver, BC, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. While permissioned blockchains enable a family of data center applications, existing systems suffer from imbalanced loads across compute and memory, exacerbating the underutilization of cloud resources. This paper presents FlexChain , a novel permissioned blockchain system that addresses this challenge by physically disaggregating CPUs, DRAM, and storage devices to process different blockchain workloads efficiently. Disaggregation allows blockchain service providers to upgrade and expand hardware resources independently to support a wide range of smart contracts with diverse CPU and memory demands. Moreover, it ensures efficient resource utilization and hence prevents resource fragmentation in a data center. We have explored the design of XOV blockchain systems in a disaggregated fashion and developed a tiered key-value store that can elastically scale its memory and storage. Our design significantly speeds up the execution stage. We have also leveraged several techniques to parallelize the validation stage in FlexChain to further improve the overall blockchain performance. Our evaluation results show that FlexChain can provide independent compute and memory scalability, while incurring at most 12.8% disaggregation overhead. FlexChain achieves almost identical throughput as the state-of-the-art distributed approaches with significantly lower memory and CPU consumption for compute-intensive and memory-intensive workloads respectively. 
    more » « less
  2. In recent years, emerging storage hardware technologies have focused on divergent goals: better performance or lower cost-per-bit. Correspondingly, data systems that employ these technologies are typically optimized either to be fast (but expensive) or cheap (but slow). We take a different approach: by architecting a storage engine to natively utilize two tiers of fast and low-cost storage technologies, we can achieve a Pareto efficient balance between performance and cost-per-bit. This paper presents the design and implementation of PrismDB, a novel key-value store that exploits two extreme ends of the spectrum of modern NVMe storage technologies (3D XPoint and QLC NAND) simultaneously. Our key contribution is how to efficiently migrate and compact data between two different storage tiers. Inspired by the classic cost-benefit analysis of log cleaning, we develop a new algorithm for multi-tiered storage compaction that balances the benefit of reclaiming space for hot objects in fast storage with the cost of compaction I/O in slow storage. Compared to the standard use of RocksDB on flash in datacenters today, PrismDB’s average throughput on tiered storage is 3.3x faster, its read tail latency is 2x better, and it is 5x more durable using equivalently-priced hardware. 
    more » « less
  3. Host-managed shingled magnetic recording drives (HMSMR) give a capacity advantage to harness the explosive growth of data. Applications where data is sequentially written and randomly read, such as key-value stores based on Log-Structured Merge Trees (LSM-trees), make the HMSMR an ideal solution due to its capacity, predictable performance, and economical cost. However, building an LSMtree based KV store on HM-SMR drives presents severe challenges in maintaining the performance and space efficiency due to the redundant cleaning processes for applications and storage devices (i.e., compaction and garbage collections). To eliminate the overhead of on-disk garbage collections (GC) and improve compaction efficiency, this paper presents GearDB, a GC-free KV store tailored for HMSMR drives. GearDB proposes three new techniques: a new on-disk data layout, compaction windows, and a novel gear compaction algorithm. We implement and evaluate GearDB with LevelDB on a real HM-SMR drive. Our extensive experiments have shown that GearDB achieves both good performance and space efficiency, i.e., on average 1:71 faster than LevelDB in random write with a space efficiency of 89.9%. 
    more » « less
  4. Summary

    Data‐driven programming models such as many‐task computing (MTC) have been prevalent for running data‐intensive scientific applications. MTC applies over‐decomposition to enable distributed scheduling. To achieve extreme scalability, MTC proposes a fully distributed task scheduling architecture that employs as many schedulers as the compute nodes to make scheduling decisions. Achieving distributed load balancing and best exploiting data locality are two important goals for the best performance of distributed scheduling of data‐intensive applications. Our previous research proposed a data‐aware work‐stealing technique to optimize both load balancing and data locality by using both dedicated and shared task ready queues in each scheduler. Tasks were organized in queues based on the input data size and location. Distributed key‐value store was applied to manage task metadata. We implemented the technique in MATRIX, a distributed MTC task execution framework. In this work, we devise an analytical suboptimal upper bound of the proposed technique, compare MATRIX with other scheduling systems, and explore the scalability of the technique at extreme scales. Results show that the technique is not only scalable but can achieve performance within 15% of the suboptimal solution. Copyright © 2015 John Wiley & Sons, Ltd.

     
    more » « less
  5. null (Ed.)
    Passive remote memory remains the holy grail of disaggregation. Most existing systems for disaggregated memory either use remote memory simply as a backing store, or design special-purpose data structures that require some amount of processing co-resident with the remote memory to manage and apply updates. The few proposals for truly passive remote memory perform well only with read-mostly workloads, rapidly deteriorating in the face of even low levels of write contention. We propose to leverage in-network devices (specifically, a programmable top-of-rack switch) to serialize remote memory accesses and resolve any write conflicts in flight. Our prototype is able to completely avoid write contention in the recently published Clover disaggregated key/value store, delivering a performance boost of almost 50% on our testbed under a mixed read/write workload. 
    more » « less