skip to main content


Title: FlexChain: an elastic disaggregated blockchain
While permissioned blockchains enable a family of data center applications, existing systems suffer from imbalanced loads across compute and memory, exacerbating the underutilization of cloud resources. This paper presents FlexChain , a novel permissioned blockchain system that addresses this challenge by physically disaggregating CPUs, DRAM, and storage devices to process different blockchain workloads efficiently. Disaggregation allows blockchain service providers to upgrade and expand hardware resources independently to support a wide range of smart contracts with diverse CPU and memory demands. Moreover, it ensures efficient resource utilization and hence prevents resource fragmentation in a data center. We have explored the design of XOV blockchain systems in a disaggregated fashion and developed a tiered key-value store that can elastically scale its memory and storage. Our design significantly speeds up the execution stage. We have also leveraged several techniques to parallelize the validation stage in FlexChain to further improve the overall blockchain performance. Our evaluation results show that FlexChain can provide independent compute and memory scalability, while incurring at most 12.8% disaggregation overhead. FlexChain achieves almost identical throughput as the state-of-the-art distributed approaches with significantly lower memory and CPU consumption for compute-intensive and memory-intensive workloads respectively.  more » « less
Award ID(s):
2104882 2107147
PAR ID:
10428231
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
16
Issue:
1
ISSN:
2150-8097
Page Range / eLocation ID:
23 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Resource disaggregation is a new architecture for data centers in which resources like memory and storage are decoupled from the CPU, managed independently, and connected through a high-speed network. Recent work has shown that although disaggregated data centers (DDCs) provide operational benefits, applications running on DDCs experience degraded performance due to extra network latency between the CPU and their working sets in main memory. DBMSs are an interesting case study for DDCs for two main reasons: (1) DBMSs normally process data-intensive workloads and require data movement between different resource components; and (2) disaggregation drastically changes the assumption that DBMSs can rely on their own internal resource management. We take the first step to thoroughly evaluate the query execution performance of production DBMSs in disaggregated data centers. We evaluate two popular open-source DBMSs (MonetDB and PostgreSQL) and test their performance with the TPC-H benchmark in a recently released operating system for resource disaggregation. We evaluate these DBMSs with various configurations and compare their performance with that of single-machine Linux with the same hardware resources. Our results confirm that significant performance degradation does occur, but, perhaps surprisingly, we also find settings in which the degradation is minor or where DDCs actually improve performance. 
    more » « less
  2. One recent trend of cloud data center design is resource disaggregation. Instead of having server units with “converged” compute, memory, and storage resources, a disaggregated data center (DDC) has pools of resources of each type connected via a network. While the systems community has been investigating the research challenges of DDC by designing new OS and network stacks, the implications of DDC for next-generation database systems remain unclear. In this paper, we take a first step towards understanding how DDCs might affect the design of relational databases, discuss the potential advantages and drawbacks in the context of data processing, and outline research challenges in addressing them. 
    more » « less
  3. null (Ed.)
    Fast networks and the desire for high resource utilization in data centers and the cloud have driven disaggregation. Application compute is separated from storage, but this leads to high overheads when data must move over the network for simple operations on it. Alternatively, systems could allow applications to run application logic within storage via user-defined functions. Unfortunately, this ties provisioning and utilization of storage and compute resources together again. We present a new approach to executing storage-level functions in an in-memory key-value store that avoids this problem by dynamically deciding where to execute functions over data. Users write storage functions that are logically decoupled from storage, but storage servers choose where to run invocations of these functions physically. By using a server-internal cost model and observing function execution, servers choose to directly run inexpensive functions, while preferring to execute functions with high CPU-cost at client machines. We show that with this approach storage servers can reduce network request processing costs, avoid server compute bottlenecks, and improve aggregate storage system throughput. We realize our approach on an in-memory key-value store that executes 3.2 million strict serializable user-defined storage functions per second with 100 us response times. When running a mix of logic from different applications, it provides throughput better than running that logic purely at storage servers (85% more) or purely at clients (10% more). For our workloads, it also reduces latency (up to 2x) and transactional aborts (up to 33%) over pure client-side execution. 
    more » « less
  4. Many existing blockchains do not adequately address all the characteristics of distributed system applications and suffer from serious architectural limitations resulting in performance and confidentiality issues. While recent permissioned blockchain systems, have tried to overcome these limitations, their focus has mainly been on workloads with no-contention, i.e., no conflicting transactions. In this paper, we introduce OXII, a new paradigm for permissioned blockchains to support distributed applications that execute concurrently. OXII is designed for workloads with (different degrees of) contention. We then present ParBlockchain, a permissioned blockchain designed specifically in the OXII paradigm. The evaluation of ParBlockchain using a series of benchmarks reveals that its performance in workloads with any degree of contention is better than the state of the art permissioned blockchain systems. 
    more » « less
  5. Memory disaggregation (MD) allows for scalable and elastic data center design by separating compute (CPU) from memory. With MD, compute and memory are no longer coupled into the same server box. Instead, they are connected to each other via ultra-fast networking such as RDMA. MD can bring many advantages, e.g., higher memory utilization, better independent scaling (of compute and memory), and lower cost of ownership. This paper makes the case that MD can fuel the next wave of innovation on database systems. We observe that MD revives the great debate of shared what in the database community. We envision thatdistributed shared-memory databases (DSM-DB, for short)- that have not received much attention before - can be promising in the future with MD. We present a list of challenges and opportunities that can inspire next steps in system design making the case for DSM-DB.

     
    more » « less