skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Longshot: Indexing Growing Databases Using MPC and Differential Privacy
In this work, we propose Longshot, a novel design for secure outsourced database systems that supports ad-hoc queries through the use of secure multi-party computation and differential privacy. By combining these two techniques, we build and maintain data structures (i.e., synopses, indexes, and stores) that improve query execution efficiency while maintaining strong privacy and security guarantees. As new data records are uploaded by data owners, these data structures are continually updated by Longshot using novel algorithms that leverage bounded information leakage to minimize the use of expensive cryptographic protocols. Furthermore, Long-shot organizes the data structures as a hierarchical tree based on when the update occurred, allowing for update strategies that provide logarithmic error over time. Through this approach, Longshot introduces a tunable three-way trade-off between privacy, accuracy, and efficiency. Our experimental results confirm that our optimizations are not only asymptotic improvements but also observable in practice. In particular, we see a 5x efficiency improvement to update our data structures even when the number of updates is less than 200. Moreover, the data structures significantly improve query runtimes over time, about ~103x faster compared to the baseline after 20 updates.  more » « less
Award ID(s):
2016393
PAR ID:
10469341
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
16
Issue:
8
ISSN:
2150-8097
Page Range / eLocation ID:
2005 to 2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Secure collaborative analytics (SCA) enables the processing of analytical SQL queries across data from multiple owners, even when direct data sharing is not possible. While traditional SCA provides strong privacy through data-oblivious methods, the significant overhead has limited its practical use. Recent SCA variants that allow controlled leakages under differential privacy (DP) strike balance between privacy and efficiency but still face challenges like unbounded privacy loss, costly execution plan, and lossy processing. To address these challenges, we introduce SPECIAL, the first SCA system that simultaneously ensures bounded privacy loss, advanced query planning, and lossless processing. SPECIAL employs a novelsynopsis-assisted secure processing model, where a one-time privacy cost is used to generate private synopses from owner data. These synopses enable SPECIAL to estimate compaction sizes for secure operations (e.g., filter, join) and index encrypted data without additional privacy loss. These estimates and indexes can be prepared before runtime, enabling efficient query planning and accurate cost estimations. By leveraging one-sided noise mechanisms and private upper bound techniques, SPECIAL guarantees lossless processing for complex queries (e.g., multi-join). Our comprehensive benchmarks demonstrate that SPECIAL outperforms state-of-the-art SCAs, with up to 80× faster query times, 900× smaller memory usage for complex queries, and up to 89× reduced privacy loss in continual processing. 
    more » « less
  2. In this paper, we consider secure outsourced growing databases (SOGDB) that support view-based query answering. These databases allow untrusted servers to privately maintain a materialized view. This allows servers to use only the materialized view for query processing instead of accessing the original data from which the view was derived. To tackle this, we devise a novel view-based SOGDB framework, Incshrink. The key features of this solution are: (i) Incshrink maintains the view using incremental MPC operators which eliminates the need for a trusted third party upfront, and (ii) to ensure high performance, Incshrink guarantees that the leakage satisfies DP in the presence of updates. To the best of our knowledge, there are no existing systems that have these properties. We demonstrate Incshrink's practical feasibility in terms of efficiency and accuracy with extensive experiments on real-world datasets and the TPC-ds benchmark. The evaluation results show that Incshrink provides a 3-way trade-off in terms of privacy, accuracy and efficiency, and offers at least a 7,800x performance advantage over standard SOGDB that do not support view-based query paradigm. 
    more » « less
  3. In this paper, we consider privacy-preserving update strategies for secure outsourced growing databases. Such databases allow appendonly data updates on the outsourced data structure while analysis is ongoing. Despite a plethora of solutions to securely outsource database computation, existing techniques do not consider the information that can be leaked via update patterns. To address this problem, we design a novel secure outsourced database framework for growing data, DP-Sync, which interoperate with a large class of existing encrypted databases and supports efficient updates while providing differentially-private guarantees for any single update. We demonstrate DP-Sync's practical feasibility in terms of performance and accuracy with extensive empirical evaluations on real world datasets. 
    more » « less
  4. Abstract The ability to query and update over encrypted data is an essential feature to enable breach-resilient cyber-infrastructures. Statistical attacks on searchable encryption (SE) have demonstrated the importance of sealing information leaks in access patterns. In response to such attacks, the community has proposed the Oblivious Random Access Machine (ORAM). However, due to the logarithmic communication overhead of ORAM, the composition of ORAM and SE is known to be costly in the conventional client-server model, which poses a critical barrier toward its practical adaptations. In this paper, we propose a novel hardware-supported privacy-enhancing platform called Practical Oblivious Search and Update Platform (POSUP), which enables oblivious keyword search and update operations on large datasets with high efficiency. We harness Intel SGX to realize efficient oblivious data structures for oblivious search/update purposes. We implemented POSUP and evaluated its performance on a Wikipedia dataset containing ≥2 29 keyword-file pairs. Our implementation is highly efficient, taking only 1 ms to access a 3 KB block with Circuit-ORAM. Our experiments have shown that POSUP offers up to 70× less end-to-end delay with 100× reduced network bandwidth consumption compared with the traditional ORAM-SE composition without secure hardware. POSUP is also at least 4.5× faster for up to 99.5% of keywords that can be searched compared with state-of-the-art Intel SGX-assisted search platforms. 
    more » « less
  5. We study the dynamic query evaluation problem: Given a full conjunctive query Q and a sequence of updates to the input database, we construct a data structure that supports constant-delay enumeration of the tuples in the query output after each update. We show that a sequence of N insert-only updates to an initially empty database can be executed in total time O(Nw(Q)), where w(Q) is the fractional hypertree width of Q. This matches the complexity of the static query evaluation problem for Q and a database of size N. One corollary is that the amortized time per single-tuple insert is constant for acyclic full conjunctive queries. In contrast, we show that a sequence of N inserts and deletes can be executed in total time Õ(Nw(Q')), where Q' is obtained from Q by extending every relational atom with extra variables that represent the lifespans of tuples in the database. We show that this reduction is optimal in the sense that the static evaluation runtime of Q' provides a lower bound on the total update time for the output of Q. Our approach achieves amortized optimal update times for the hierarchical and Loomis-Whitney join queries. 
    more » « less