skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detecting High-energy Neutrino Minibursts from Local Supernovae with Multiple Neutrino Observatories
Abstract Growing evidence from multiwavelength observations of extragalactic supernovae (SNe) has established the presence of dense circumstellar material in Type II SNe. Interaction between the SN ejecta and the circumstellar material should lead to diffusive shock acceleration of cosmic rays and associated high-energy emission. Observation of high-energy neutrinos along with the MeV neutrinos from SNe will provide unprecedented opportunities to understand unanswered questions in cosmic-ray and neutrino physics. We show that current and future neutrino detectors can identify high-energy neutrinos from an extragalactic SN in the neighborhood of the Milky Way. We present the prospects for detecting high-energy neutrino minibursts from SNe in known local galaxies, and demonstrate how the network of multiple high-energy neutrino detectors will extend the horizon for the identification of high-energy SN neutrinos. We also discuss high-energy neutrino emission from SN 2023ixf.  more » « less
Award ID(s):
1908689
PAR ID:
10469391
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
956
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L8
Size(s):
Article No. L8
Sponsoring Org:
National Science Foundation
More Like this
  1. The detection of an astrophysical flux of neutrinos in the TeV–PeV energy range by the IceCube Neutrino Observatory has opened new possibilities for the study of extreme cosmic accelerators. The apparent isotropy of the neutrino arrival directions favors an extragalactic origin for this flux, potentially created by a large population of distant sources. Recent evidence for the detection of neutrino emission from extragalactic sources includes the active galaxies TXS 0506+056 and NGC 1068. We here review the current status of the search for the sources of the high-energy neutrino flux, concentrating on its extragalactic contribution. We discuss the implications of these observations for multimessenger studies of cosmic sources and present an outlook for how additional observations by current and future instruments will help address fundamental questions in the emerging field of high-energy neutrino astronomy. 
    more » « less
  2. Multiwavelength observations have revealed that dense, confined circumstellar material (CCSM) commonly exists in the vicinity of supernova (SN) progenitors, suggesting enhanced mass losses years to centuries before their core collapse. Interacting SNe, which are powered or aided by interaction with the CCSM, are considered to be promising high-energy multimessenger transient sources. We present detailed results of broadband electromagnetic emission, following the time-dependent model proposed in the previous work on high-energy SN neutrinos [K. Murase, New prospects for detecting high-energy neutrinos from nearby supernovae, ]. We investigate electromagnetic cascades in the presence of Coulomb losses, including inverse-Compton and synchrotron components that significantly contribute to MeV and high-frequency radio bands, respectively. We also discuss the application to SN 2023ixf. Published by the American Physical Society2024 
    more » « less
  3. Abstract A novel approach is proposed to reveal a secret birth of enhanced circumstellar material (CSM) surrounding a collapsing massive star using neutrinos as a unique probe. In this scheme, nonthermal TeV-scale neutrinos produced in ejecta–CSM interactions are tied with thermal MeV neutrinos emitted from a pre-explosion burning process, based on a scenario that CSM had been formed via the presupernova activity. Taking a representative model of the presupernova neutrinos, the spectrum and light curve of the corresponding high-energy CSM neutrinos are calculated at multiple mass-loss efficiencies, which are considered as a systematic uncertainty. In addition, as a part of the method demonstration, the detected event rates along time at JUNO and IceCube, as representative detectors, are estimated for the presupernova and CSM neutrinos, respectively, and are compared with the expected background rate at each detector. The presented method is found to be reasonably applicable for the range up to ∼1 kpc and even farther with future experimental efforts. The potentialities of other neutrino detectors, such as SK-Gd, Hyper-Kamiokande, and KM3NeT, are also discussed. This is a pioneering work of performing astrophysics with neutrinos from diverse energy regimes, initiating multienergy neutrino astronomy in the forthcoming era where next-generation large-scale neutrino telescopes are operating. 
    more » « less
  4. Abstract New neutrino interactions beyond the Standard Model (BSM) have been of much interest in not only particle physics but also cosmology and astroparticle physics. We numerically investigate the time delay distribution of astrophysical neutrinos that interact with the cosmic neutrino background. Using the Monte Carlo method, we develop a framework that enables us to simulate the time-dependent energy spectra of high-energy neutrinos that experience even multiple scatterings en route and to handle the sharp increase in the cross section at the resonance energy. As an example, we focus on the case of secret neutrino interactions with a scalar mediator. While we find the excellent agreement between analytical and simulation results for small optical depths, our simulations enable us to study optically thick cases that are not described by the simplest analytic estimates. Our simulations are used to understand effects of cosmological redshifts, neutrino spectra and flavors. The developments will be useful for probing BSM neutrino interactions with not only current neutrino detectors such as IceCube and Super-Kamiokande but also future neutrino detectors such as IceCube-Gen2 and Hyper-Kamiokande. 
    more » « less
  5. Capone, A.; De Vincenzi, M.; Morselli, A. (Ed.)
    The sources of the astrophysical neutrino flux discovered by IceCube remain for the most part unresolved. Extragalactic core-collapse supernovae (CCSNe) have been suggested as potentially able to produce high-energy neutrinos. In recent years, the Zwicky Transient Facility has discovered a population of exceptionally luminous supernovae, whose powering mechanisms have not yet been fully established. A fraction of these objects fall in the broader category of type IIn CCSNe, showing signs of interaction with a dense circumstellar medium. Theoretical models connect the supernova photometric properties to the dynamics of a shock-powered emission, predicting particle acceleration. In this contribution, we outline the plan for a search of high-energy neutrinos targeting the population of superluminous and type IIn supernovae with the IceCube Neutrino Observatory. 
    more » « less