skip to main content


Title: De novo design of molecules towards biased properties via a deep generative framework and iterative transfer learning
De Novo design of molecules with targeted properties represents a new frontier in molecule development. Despite enormous progress, two main challenges remain, i.e., (i) generation of novel molecules with targeted and quantifiable properties; (ii) generated molecules having property values beyond the range in the training dataset. To tackle these challenges, we propose a novel reinforced regressional and conditional generative adversarial network (RRCGAN) to generate chemically valid, drug-like molecules with targeted heat capacity (Cv) values as a proof-of-concept study. As validated by DFT, ~80% of the generated samples have a relative error (RE) of < 20% of the targeted Cv values. To bias the generation of molecules with the Cv values beyond the range of the original training molecules, transfer learning was applied to iteratively retrain the RRCGAN model. After only two iterations of transfer learning, the mean Cv of the generated molecules increases to 44.0 cal/(mol·K) from the mean value of 31.6 cal/(mol·K) shown in the initial training dataset. This demonstrated computation methodology paves a new avenue to discovering drug-like molecules with biased properties, which can be straightforwardly repurposed for optimizing individual or multi-objective properties of various matters.  more » « less
Award ID(s):
2154428
NSF-PAR ID:
10408410
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ChemRxiv
ISSN:
2573-2293
Page Range / eLocation ID:
DOI: 10.26434/chemrxiv-2023-0zv2f-v2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Expanding our knowledge of small molecules beyond what is known in nature or designed in wet laboratories promises to significantly advance cheminformatics, drug discovery, biotechnology and material science. In silico molecular design remains challenging, primarily due to the complexity of the chemical space and the non-trivial relationship between chemical structures and biological properties. Deep generative models that learn directly from data are intriguing, but they have yet to demonstrate interpretability in the learned representation, so we can learn more about the relationship between the chemical and biological space. In this article, we advance research on disentangled representation learning for small molecule generation. We build on recent work by us and others on deep graph generative frameworks, which capture atomic interactions via a graph-based representation of a small molecule. The methodological novelty is how we leverage the concept of disentanglement in the graph variational autoencoder framework both to generate biologically relevant small molecules and to enhance model interpretability.

    Results

    Extensive qualitative and quantitative experimental evaluation in comparison with state-of-the-art models demonstrate the superiority of our disentanglement framework. We believe this work is an important step to address key challenges in small molecule generation with deep generative frameworks.

    Availability and implementation

    Training and generated data are made available at https://ieee-dataport.org/documents/dataset-disentangled-representation-learning-interpretable-molecule-generation. All code is made available at https://anonymous.4open.science/r/D-MolVAE-2799/.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Generating new molecules with specified chemical and biological properties via generative models has emerged as a promising direction for drug discovery. However, existing methods require extensive training/fine-tuning with a large dataset, often unavailable in real-world generation tasks. In this work, we propose a new retrieval-based framework for controllable molecule generation. We use a small set of exemplar molecules, i.e., those that (partially) satisfy the design criteria, to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria. We design a retrieval mechanism that retrieves and fuses the exemplar molecules with the input molecule, which is trained by a new self-supervised objective that predicts the nearest neighbor of the input molecule. We also propose an iterative refinement process to dynamically update the generated molecules and retrieval database for better generalization. Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning. On various tasks ranging from simple design criteria to a challenging real-world scenario for designing lead compounds that bind to the SARS-CoV-2 main protease, we demonstrate our approach extrapolates well beyond the retrieval database, and achieves better performance and wider applicability than previous methods. 
    more » « less
  3. Variable names are critical for conveying intended program behavior. Machine learning-based program analysis methods use variable name representations for a wide range of tasks, such as suggesting new variable names and bug detection. Ideally, such methods could capture semantic relationships between names beyond syntactic similarity, e.g., the fact that the names average and mean are similar. Unfortunately, previous work has found that even the best of previous representation approaches primarily capture "relatedness" (whether two variables are linked at all), rather than "similarity" (whether they actually have the same meaning). We propose VarCLR, a new approach for learning semantic representations of variable names that effectively captures variable similarity in this stricter sense. We observe that this problem is an excellent fit for contrastive learning, which aims to minimize the distance between explicitly similar inputs, while maximizing the distance between dissimilar inputs. This requires labeled training data, and thus we construct a novel, weakly-supervised variable renaming dataset mined from GitHub edits. We show that VarCLR enables the effective application of sophisticated, general-purpose language models like BERT, to variable name representation and thus also to related downstream tasks like variable name similarity search or spelling correction. VarCLR produces models that significantly outperform the state-of-the-art on IdBench, an existing benchmark that explicitly captures variable similarity (as distinct from relatedness). Finally, we contribute a release of all data, code, and pre-trained models, aiming to provide a drop-in replacement for variable representations used in either existing or future program analyses that rely on variable names. 
    more » « less
  4. Abstract Designing a new heterostructure electrode has many challenges associated with interface engineering. Demanding simulation resources and lack of heterostructure databases continue to be a barrier to understanding the chemistry and mechanics of complex interfaces using simulations. Mixed-dimensional heterostructures composed of two-dimensional (2D) and three-dimensional (3D) materials are undisputed next-generation materials for engineered devices due to their changeable properties. The present work computationally investigates the interface between 2D graphene and 3D tin (Sn) systems with density functional theory (DFT) method. This computationally demanding simulation data is further used to develop machine learning (ML)-based potential energy surfaces (PES). The approach to developing PES for complex interface systems in the light of limited data and the transferability of such models has been discussed. To develop PES for graphene-tin interface systems, high-dimensional neural networks (HDNN) are used that rely on atom-centered symmetry function to represent structural information. HDNN are modified to train on the total energies of the interface system rather than atomic energies. The performance of modified HDNN trained on 5789 interface structures of graphene|Sn is tested on new interfaces of the same material pair with varying levels of structural deviations from the training dataset. Root-mean-squared error (RMSE) for test interfaces fall in the range of 0.01–0.45 eV/atom, depending on the structural deviations from the reference training dataset. By avoiding incorrect decomposition of total energy into atomic energies, modified HDNN model is shown to obtain higher accuracy and transferability despite a limited dataset. Improved accuracy in the ML-based modeling approach promises cost-effective means of designing interfaces in heterostructure energy storage systems with higher cycle life and stability. 
    more » « less
  5. Abstract

    Therapeutic antibody development requires selection and engineering of molecules with high affinity and other drug-like biophysical properties. Co-optimization of multiple antibody properties remains a difficult and time-consuming process that impedes drug development. Here we evaluate the use of machine learning to simplify antibody co-optimization for a clinical-stage antibody (emibetuzumab) that displays high levels of both on-target (antigen) and off-target (non-specific) binding. We mutate sites in the antibody complementarity-determining regions, sort the antibody libraries for high and low levels of affinity and non-specific binding, and deep sequence the enriched libraries. Interestingly, machine learning models trained on datasets with binary labels enable predictions of continuous metrics that are strongly correlated with antibody affinity and non-specific binding. These models illustrate strong tradeoffs between these two properties, as increases in affinity along the co-optimal (Pareto) frontier require progressive reductions in specificity. Notably, models trained with deep learning features enable prediction of novel antibody mutations that co-optimize affinity and specificity beyond what is possible for the original antibody library. These findings demonstrate the power of machine learning models to greatly expand the exploration of novel antibody sequence space and accelerate the development of highly potent, drug-like antibodies.

     
    more » « less