skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mean field approach to stochastic control with partial information
In our present article, we follow our way of developing mean field type control theory in our earlier works [Bensoussanet al., Mean Field Games and Mean Field Type Control Theory.Springer, New York (2013)], by first introducing the Bellman and then master equations, the system of Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck (FP) equations, and then tackling them by looking for the semi-explicit solution for the linear quadratic case, especially with an arbitrary initial distribution; such a problem, being left open for long, has not been specifically dealt with in the earlier literature, such as Bensoussan [Stochastic Control of Partially Observable Systems. Cambridge University Press, (1992)] and Nisio [Stochastic control theory: Dynamic programming principle. Springer (2014)], which only tackled the linear quadratic setting with Gaussian initial distributions. Thanks to the effective mean-field theory, we propose a solution to this long standing problem of the general non-Gaussian case. Besides, our problem considered here can be reduced to the model in Bandiniet al.[Stochastic Process. Appl.129(2019) 674–711], which is fundamentally different from our present proposed framework.  more » « less
Award ID(s):
1905449
PAR ID:
10469455
Author(s) / Creator(s):
;
Editor(s):
Buttazzo, G.; Casas, E.; de Teresa, L.; Glowinski, R.; Leugering, G.; Trélat, E.; Zhang, X.
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
ESAIM: Control, Optimisation and Calculus of Variations
Volume:
27
ISSN:
1292-8119
Page Range / eLocation ID:
89
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we study the maximum principle of mean field type control problems when the volatility function depends on the state and its measure and also the control, by using our recently developed method in [Bensoussan, A., Huang, Z. and Yam, S. C. P. [2023] Control theory on Wasserstein space: A new approach to optimality conditions, Ann. Math. Sci. Appl.; Bensoussan, A., Tai, H. M. and Yam, S. C. P. [2023] Mean field type control problems, some Hilbert-space-valued FBSDEs, and related equations, preprint (2023), arXiv:2305.04019; Bensoussan, A. and Yam, S. C. P. [2019] Control problem on space of random variables and master equation, ESAIM Control Optim. Calc. Var. 25, 10]. Our method is to embed the mean field type control problem into a Hilbert space to bypass the evolution in the Wasserstein space. We here give a necessary condition and a sufficient condition for these control problems in Hilbert spaces, and we also derive a system of forward–backward stochastic differential equations. 
    more » « less
  2. In this paper, we study the maximum principle of mean field type control problems when the volatility function depends on the state and its measure and also the control, by using our recently developed method in [Bensoussan, A., Huang, Z. and Yam, S. C. P. [2023] Control theory on Wasserstein space: A new approach to optimality conditions, Ann. Math. Sci. Appl.; Bensoussan, A., Tai, H. M. and Yam, S. C. P. [2023] Mean field type control problems, some Hilbert-space-valued FBSDEs, and related equations, preprint (2023), arXiv:2305.04019; Bensoussan, A. and Yam, S. C. P. [2019] Control problem on space of random variables and master equation, ESAIM Control Optim. Calc. Var. 25, 10]. Our method is to embed the mean field type control problem into a Hilbert space to bypass the evolution in the Wasserstein space. We here give a necessary condition and a sufficient condition for these control problems in Hilbert spaces, and we also derive a system of forward–backward stochastic differential equations. 
    more » « less
  3. An optimal control problem is considered for linear stochastic differential equations with quadratic cost functional. The coefficients of the state equation and the weights in the cost functional are bounded operators on the spaces of square integrable random variables. The main motivation of our study is linear quadratic (LQ, for short) optimal control problems for mean-field stochastic differential equations. Open-loop solvability of the problem is characterized as the solvability of a system of linear coupled forward-backward stochastic differential equations (FBSDE, for short) with operator coefficients, together with a convexity condition for the cost functional. Under proper conditions, the well-posedness of such an FBSDE, which leads to the existence of an open-loop optimal control, is established. Finally, as applications of our main results, a general mean-field LQ control problem and a concrete mean-variance portfolio selection problem in the open-loop case are solved. 
    more » « less
  4. In this article, we provide an original systematic global-in-time analysis of mean field type control problems on ℝnwith generic cost functions allowing quadratic growth by a novel “lifting” approach which is not the same as the traditional lifting. As an alternative to the recent popular analytical method of tackling master equations, we resolve the control problem in a proper Hilbert subspace of the whole space ofL2random variables, it can be regarded as a tangent space attached at the initial probability measure. The problem is linked to the global solvability of the Hilbert-space-valued forward–backward stochastic differential equation (FBSDE), which is solved by variational techniques here. We also rely on the Jacobian flow of the solution to this FBSDE to establish the regularity of the value function, including its linearly functional differentiability, which leads to the classical wellposedness of the Bellman equation. Together with the linear functional derivatives and the gradient of the linear functional derivatives of the solution to the FBSDE, we also obtain the classical wellposedness of the master equation. Our current approach imposes structural conditions directly on the cost functions. The contributions of adopting this framework in our study are twofold: (i) compared with imposing conditions on Hamiltonian, the structural conditions imposed in this work are easily verified, and less demanding on the cost functions while solving the master equation; and (ii) when the cost functions are not convex in the state variable or there is a lack of monotonicity of cost functions, an accurate lifespan can be provided for the local existence, which may not be that small in many cases. 
    more » « less
  5. We develop a new dynamic continuous-time model of optimal consumption and investment to include independent stochastic labor income. We reduce the problem of solving the Bellman equation to a problem of solving an integral equation. We then explicitly characterize the optimal consumption and investment strategy as a function of income-to-wealth ratio. We provide some analytical comparative statics associated with the value function and optimal strategies. We also develop a quite general numerical algorithm for control iteration and solve the Bellman equation as a sequence of solutions to ordinary differential equations. This numerical algorithm can be readily applied to many other optimal consumption and investment problems especially with extra nondiversifiable Brownian risks, resulting in nonlinear Bellman equations. Finally, our numerical analysis illustrates how the presence of stochastic labor income affects the optimal consumption and investment strategy. Funding: A. Bensoussan was supported by the National Science Foundation under grant [DMS-2204795]. S. Park was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea, South Korea [NRF-2022S1A3A2A02089950]. 
    more » « less