This study examines the impacts of assimilating ocean-surface winds derived from the NASA Cyclone Global Navigation Satellite System (CYGNSS) on improving the short-range numerical simulations and forecasts of landfalling hurricanes using the NCEP operational Hurricane Weather Research and Forecasting (HWRF) model. A series of data assimilation experiments are performed using HWRF and a Gridpoint Statistical Interpolation (GSI)-based hybrid 3-dimensional ensemble-variational (3DEnVar) data assimilation system. The influence of CYGNSS data on hurricane forecasts is compared with that of Advanced Scatterometer (ASCAT) wind products that have already been assimilated into the HWRF forecast system in a series of assimilation experiments. The effects of different versions of CYGNSS data (V2.1 vs. V3.0) on hurricane forecasts are evaluated. The results indicate that CYGNSS ocean-surface wind can lead to improved numerical simulations and forecasts of hurricane track and intensity, asymmetric wind structure, and precipitation. The impacts of CYGNSS on hurricane forecasts are comparable and complementary to the operational use of ASCAT satellite data products. The dependence of the relative impacts of different versions of CYGNSS data on optimal thinning distances is evident.
more »
« less
Evaluation of Experimental High-Resolution Model Forecasts of Tropical Cyclone Precipitation Using Object-Based Metrics
Abstract Tropical cyclone (TC) precipitation poses serious hazards including freshwater flooding. High-resolution hurricane models predict the location and intensity of TC rainfall, which can influence local evacuation and preparedness policies. This study evaluates 0–72-h precipitation forecasts from two experimental models, the Hurricane Analysis and Forecast System (HAFS) model and the basin-scale Hurricane Weather Research and Forecasting (HWRF-B) Model, for 2020 North Atlantic landfalling TCs. We use an object-based method that quantifies the shape and size of the forecast and observed precipitation. Precipitation objects are then compared for light, moderate, and heavy precipitation using spatial metrics (e.g., area, perimeter, elongation). Results show that both models forecast precipitation that is too connected, too close to the TC center, and too enclosed around the TC center. Collectively, these spatial biases suggest that the model forecasts are too intense even though there is a negative intensity bias for both models, indicating there may be an inconsistency between the precipitation configuration and the maximum sustained winds in the model forecasts. The HAFS model struggles with forecasting stratiform versus convective precipitation and with the representation of lighter (stratiform) precipitation during the first 6 h after initialization. No such spinup issues are seen in the HWRF-B forecasts, which instead exhibit systematic biases at all lead times and systematic issues across all rain-rate thresholds. Future work will investigate spinup issues in the HAFS model forecast and how the microphysics parameterization affects the representation of precipitation in both models.
more »
« less
- PAR ID:
- 10469560
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Weather and Forecasting
- Volume:
- 38
- Issue:
- 10
- ISSN:
- 0882-8156
- Format(s):
- Medium: X Size: p. 2111-2134
- Size(s):
- p. 2111-2134
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vertical eddy diffusivity (VED) in the planetary boundary layer (PBL) has a significant impact on forecasts of tropical cyclone (TC) structure and intensity. VED uncertainties in PBL parameterizations can be partly attributed to the model’s inability to represent roll vortices (RV). In this study, RV effects on turbulent fluxes derived from a large eddy simulation (LES) by Li et al. (Geophys. Res. Lett., 2021, 48, e2020GL090703) are added to the VED parameterization of the PBL scheme within the operational Hurricane Weather Research and Forecasting (HWRF) model. RV contribution to VED is parameterized through a coefficient and varies with the RV intensity and velocity scale. A modification over land has also been implemented. This modified VED parameterization is compared with the original wind-speed-dependent VED scheme in HWRF. Retrospective HWRF forecasts of Hurricanes Florence (2018) and Laura (2020) are analyzed to evaluate the impacts of the modified VED scheme on landfalling hurricane forecasts. Results show that the modified PBL scheme with the RV effect leads to an improvement in 10-m maximum wind speed forecasts of 14%–31%, with a neutral to positive improvement for track forecasts. Improved wind structure and precipitation forecasts against observations are also noted with the modified PBL scheme. Further diagnoses indicate that the revised PBL scheme enhances moist entropy in the boundary layer over land, leading to improved TC intensity prediction compared to the original scheme.more » « less
-
Accurate specification of hurricane inner-core structure is critical to predicting the evolution of a hurricane. However, observations over hurricane inner cores are generally lacking. Previous studies have emphasized Tail Doppler radar (TDR) data assimilation to improve hurricane inner-core representation. Recently, Doppler wind lidar (DWL) has been used as an observing system to sample hurricane inner-core and environmental conditions. The NOAA P3 Hurricane Hunter aircraft has DWL installed and can obtain wind data over a hurricane’s inner core when the aircraft passes through the hurricane. In this study, we examine the impact of assimilating DWL winds and TDR radial winds on the prediction of Hurricane Earl (2016) with the NCEP operational Hurricane Weather Research and Forecasting (HWRF) system. A series of data assimilation experiments are conducted with the Gridpoint Statistical Interpolation (GSI)-based ensemble-3DVAR hybrid system to identify the best way to assimilate TDR and DWL data into the HWRF forecast system. The results show a positive impact of DWL data on hurricane analysis and prediction. Compared with the assimilation of u and v components, assimilation of DWL wind speed provides better hurricane track and intensity forecasts. Proper choices of data thinning distances (e.g., 5 km horizontal thinning and 70 hPa vertical thinning for DWL) can help achieve better analysis in terms of hurricane vortex representation and forecasts. In the analysis and forecast cycles, the combined TDR and DWL assimilation (DWL wind speed and TDR radial wind, along with other conventional data, e.g., NCEP Automated Data Processing (ADP) data) offsets the downgrade analysis from the absence of DWL observations in an analysis cycle and outperforms assimilation of a single type of data (either TDR or DWL) and leads to improved forecasts of hurricane track, intensity, and structure. Overall, assimilation of DWL observations has been beneficial for analysis and forecasts in most cases. The outcomes from this study demonstrate the great potential of including DWL wind profiles in the operational HWRF system for hurricane forecast improvement.more » « less
-
Abstract Hurricanes have been the most destructive and expensive hydrometeorological event in U.S. history, causing catastrophic winds and floods. Hurricane dynamics can significantly impact the amount and spatial extent of storm precipitation. However, the complex interactions of hurricane intensity and precipitation and the impacts of improving hurricane dynamics on streamflow forecasts are not well established yet. This paper addresses these gaps by comprehensively characterizing the role of vertical diffusion in improving hurricane intensity and streamflow forecasts under different planetary boundary layer, microphysics, and cumulus parameterizations. To this end, the Weather Research and Forecasting (WRF) atmospheric model is coupled with the WRF hydrological (WRF-Hydro) model to simulate four major hurricanes landfalling in three hurricane-prone regions in the United States. First, a stepwise calibration is carried out in WRF-Hydro, which remarkably reduces streamflow forecast errors compared to the U.S. Geological Survey (USGS) gauges. Then, 60 coupled hydrometeorological simulations were conducted to evaluate the performance of current weather parameterizations. All schemes were shown to underestimate the observed intensity of the considered major hurricanes since their diffusion is overdissipative for hurricane flow simulations. By reducing the vertical diffusion, hurricane intensity forecasts were improved by ∼39.5% on average compared to the default models. These intensified hurricanes generated more intense and localized precipitation forcing. This enhancement in intensity led to ∼16% and ∼34% improvements in hurricane streamflow bias and correlation forecasts, respectively. The research underscores the role of improved hurricane dynamics in enhancing flood predictions and provides new insights into the impacts of vertical diffusion on hurricane intensity and streamflow forecasts. Significance StatementDespite significant recent improvements, numerical weather prediction models struggle to accurately forecast hurricane intensity and track due to many reasons such as inaccurate physical parameterization for hurricane flows. Furthermore, the performance of existing physics schemes is not well studied for hurricane flood forecasting. This study bridges these knowledge gaps by extensively evaluating different physical parameterizations for hurricane track, intensity, and flood forecasts using an atmospheric model coupled with a hydrological model. Then, a reduced diffusion boundary layer scheme is developed, making remarkable improvements in hurricane intensity forecasts due to the overdissipative nature of the considered schemes for major hurricane simulations. This reduced diffusion model is shown to significantly enhance hurricane flood forecasts, indicating the significance of hurricane dynamics on its induced precipitation.more » « less
-
Abstract Because geostationary satellite (Geo) imagery provides a high temporal resolution window into tropical cyclone (TC) behavior, we investigate the viability of its application to short-term probabilistic forecasts of TC convective structure to subsequently predict TC intensity. Here, we present a prototype model that is trained solely on two inputs: Geo infrared imagery leading up to the synoptic time of interest and intensity estimates up to 6 h prior to that time. To estimate future TC structure, we compute cloud-top temperature radial profiles from infrared imagery and then simulate the evolution of an ensemble of those profiles over the subsequent 12 h by applying a deep autoregressive generative model (PixelSNAIL). To forecast TC intensities at hours 6 and 12, we input operational intensity estimates up to the current time (0 h) and simulated future radial profiles up to +12 h into a “nowcasting” convolutional neural network. We limit our inputs to demonstrate the viability of our approach and to enable quantification of value added by the observed and simulated future radial profiles beyond operational intensity estimates alone. Our prototype model achieves a marginally higher error than the National Hurricane Center’s official forecasts despite excluding environmental factors, such as vertical wind shear and sea surface temperature. We also demonstrate that it is possible to reasonably predict short-term evolution of TC convective structure via radial profiles from Geo infrared imagery, resulting in interpretable structural forecasts that may be valuable for TC operational guidance. Significance Statement This work presents a new method of short-term probabilistic forecasting for tropical cyclone (TC) convective structure and intensity using infrared geostationary satellite observations. Our prototype model’s performance indicates that there is some value in observed and simulated future cloud-top temperature radial profiles for short-term intensity forecasting. The nonlinear nature of machine learning tools can pose an interpretation challenge, but structural forecasts produced by our model can be directly evaluated and, thus, may offer helpful guidance to forecasters regarding short-term TC evolution. Since forecasters are time limited in producing each advisory package despite a growing wealth of satellite observations, a tool that captures recent TC convective evolution and potential future changes may support their assessment of TC behavior in crafting their forecasts.more » « less
An official website of the United States government
