skip to main content


Title: Signatures of feedback in the spectacular extended emission region of NGC 5972
ABSTRACT

We present Chandra X-ray Observatory observations and Space Telescope Imaging Spectrograph spectra of NGC 5972, one of the 19 ‘Voorwerpjes’ galaxies. This galaxy contains an extended emission-line region (EELR) and an arcsecond scale nuclear bubble. NGC 5972 is a faded active galactic nucleus (AGN), with EELR luminosity suggesting a 2.1 dex decrease in Lbol in the last ∼5 × 104 yr. We investigate the role of AGN feedback in exciting the EELR and bubble given the long-term variability and potential accretion state changes. We detect broad-band (0.3–8 keV) X-ray emission in the near-nuclear regions, coincident with the [O iii] bubble, as well as diffuse soft X-ray emission coincident with the EELR. The soft nuclear (0.5–1.5 keV) emission is spatially extended and the spectra are consistent with two apec thermal populations (∼0.80 and ∼0.10 keV). We find a bubble age >2.2 Myr, suggesting formation before the current variability. We find evidence for efficient feedback with $P_{\textrm {kin}}/L_{\textrm {bol}}\sim 0.8~{{\ \rm per\ cent}}$, which may be overestimated given the recent Lbol variation. [O iii] kinematics show a 300 km s−1 high-ionization velocity consistent with disturbed rotation or potentially the line-of-sight component of a ∼780 km s−1 thermal X-ray outflow capable of driving strong shocks to photoionize the precursor material. We explore possibilities to explain the overall jet, radio lobe and EELR misalignment including evidence for a double supermassive black hole which could support a complex misaligned system.

 
more » « less
Award ID(s):
1909297
NSF-PAR ID:
10469574
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
526
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4174-4191
Size(s):
p. 4174-4191
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The central regions of galaxies harbouring active galactic nuclei (AGNs) can be quite complex, especially at high activity, presenting, besides variability, a variety of phenomena related, e.g. to ionization/excitation mechanisms. A detailed study is necessary in order to understand better those objects. For that reason, we performed a multiwavelength analysis of the nuclear region of the nearby Seyfert galaxy NGC 7314, using an optical data cube obtained with the Integral Field Unit from the Gemini Multi-Object Spectrograph, together with Hubble Space Telescope images, X-ray data from the XMM–Newton and the Nuclear Spectroscopic Telescope Array and radio data from Atacama Large Millimeter/Submillimeter Array. The goals were to study the nuclear and circumnuclear emission, the emission of the AGN and the gas kinematics. The optical spectrum shows the emission of a Seyfert nucleus, with broad components in the H α and H β emission lines, characterising a type 1 AGN, with a spectrum rich in coronal emission lines. The spatial morphology of the [O iii] λ5007 suggests the presence of an ionization cone, west of the nucleus, meanwhile the east cone seems to be obscured by dust. An extended [Fe vii] λ6087 emission was also detected, which could be possibly explained by a scenario involving photoionization + shocks mechanisms. X-rays analyses showed that there are variations in the flux; however, we did not detect any variations in the column density along the line of sight. Its variability may be a consequence of changes in the AGN accretion rate.

     
    more » « less
  2. ABSTRACT

    We present the results of a search for extended emission-line regions (EELRs) ionized by extant or recently faded active galactic nuclei (AGNs), using [O III] narrow-band imaging and spectroscopic follow-up. The sample includes 198 galaxies in 92 strongly interacting or merging galaxy systems in the range of z = 0.009–0.0285. Among these, three systems have EELRs extended beyond 10 kpc in projection from the nucleus detected in previous studies. We identify a single new distant emission region, projected 35 kpc from UGC 5941. Our optical spectrum does not detect He II, but its strong-line ratios put this in the same class as securely characterized EELR clouds. The nucleus of UGC 5941 is dominated by recent star formation, preventing detection of any weak ongoing AGN. Overall counts of distant EELRs in this and the previous TELPERION samples give incidence 2–5 per cent depending on galaxy and AGN selection, 20–50 times higher than the Galaxy Zoo EELR survey with its higher surface-brightness threshold and much larger input sample. AGNs in interacting and merging systems have an increased detection rate of 12 ± 6 per cent, while none are detected around non-interacting AGNs. Some of these AGNs are at luminosity low enough to require additional X-ray or far-infrared information to tell whether the EELR ionization level suggests long-term fading.

     
    more » « less
  3. Abstract We present results of a multiwavelength analysis of SDSS J025214.67−002813.7, a system that has been previously classified as a binary active galactic nucleus (AGN) candidate based on periodic signals detected in the optical light curves. We use available radio−X-ray observations of the system to investigate the true accretion nature. Analyzing new observations from XMM-Newton and NuSTAR, we characterize the X-ray emission and search for evidence of circumbinary accretion. Although the 0.5–10 keV spectrum shows evidence of an additional soft emission component, possibly due to extended emission from hot nuclear gas, we find the spectral shape is consistent with that of a single AGN. Compiling a full multiwavelength spectral energy distribution (SED), we also search for signs of circumbinary accretion, such as a “notch” in the continuum due to the presence of minidisks. We find that the radio–optical emission agrees with the SED of a standard, radio-quiet, AGN; however, there is a large deficit in emission blueward of ∼1400 Å. Although this deficit in emission can plausibly be attributed to a binary AGN system, we find that the SED of SDSS J0252−0028 is better explained by emission from a reddened, single AGN. However, future studies of the expected hard X-ray emission associated with binary AGNs (especially in the unequal-mass regime) will allow for more rigorous analyses of the binary AGN hypothesis. 
    more » « less
  4. null (Ed.)
    ABSTRACT Transitional millisecond pulsars are millisecond pulsars that switch between a rotation-powered millisecond pulsar state and an accretion-powered X-ray binary state, and are thought to be an evolutionary stage between neutron star low-mass X-ray binaries and millisecond pulsars. So far, only three confirmed systems have been identified in addition to a handful of candidates. We present the results of a multiwavelength study of the low-mass X-ray binary NGC 6652B in the globular cluster NGC 6652, including simultaneous radio and X-ray observations taken by the Karl G. Jansky Very Large Array and the Chandra X-ray Observatory, and optical spectroscopy and photometry. This source is the second brightest X-ray source in NGC 6652 ($L_{\textrm {X}}\sim 1.8 \times 10^{34}{\, \mathrm{erg\, s}^{-1}}$) and is known to be variable. We observe several X-ray flares over the duration of our X-ray observations, in addition to persistent radio emission and occasional radio flares. Simultaneous radio and X-ray data show no clear evidence of anticorrelated variability. Optical spectra of NGC 6652B indicate variable, broad H α emission that transitions from double-peaked emission to absorption over a time-scale of hours. We consider a variety of possible explanations for the source behaviour, and conclude that based on the radio and X-ray luminosities, short time-scale variability and X-ray flaring, and optical spectra, NGC 6652B is best explained as a transitional millisecond pulsar candidate that displays prolonged X-ray flaring behaviour. However, this could only be confirmed with observations of a change to the rotation-powered millisecond pulsar state. 
    more » « less
  5. The Space Telescope and Optical Reverberation Mapping Project (AGN STORM) on NGC 5548 in 2014 is one of the most intensive multi-wavelength AGN monitoring campaigns ever. For most of the campaign,the emission-line variations followed changes in the continuum with a time lag, as expected. However, the lines varied independently of the observed UV-optical continuum during a 60-70 day holiday, suggesting that unobserved changes to the ionizing continuum were present. To understand this remarkable phenomenon and to obtain an independent assessment of the ionizing continuum variations, we study the intrinsic absorption lines present in NGC 5548. We identify a novel cycle that reproduces the absorption line variability and thus identify the physics that allows the holiday to occur. In this cycle, variations in this obscurer’s line-of-sight covering factor modify the soft X-ray continuum, changing the ionization of helium. Ionizing radiation produced by recombining helium then affects the level of ionization of some ions seen by HST. In particular, high-ionization species are affected by changes in the obscurer covering factor, which does not affect the optical or UV continuum, so appear as uncorrelated changes, a “holiday”. It is likely that any other model which selectively changes the soft X-ray part of the continuum during the holiday can also explain the anomalous emission-line behavior observed. 
    more » « less