ABSTRACT We present the hot molecular and warm ionized gas kinematics for 33 nearby (0.001 ≲ z ≲ 0.056) X-ray selected active galaxies using the H$$_2\, 2.1218\, \mu$$m and Br γ emission lines observed in the K band with the Gemini near-infrared integral field spectrograph. The observations cover the inner 0.04–2 kpc of each active galactic nucleus at spatial resolutions of 4–250 pc with a velocity resolution of σinst ≈ 20 $${\rm km\, s^{-1}}$$. We find that 31 objects (94 per cent) present a kinematically disturbed region (KDR) seen in ionized gas, while such regions are observed in hot molecular gas for 25 galaxies (76 per cent). We interpret the KDR as being due to outflows with masses of 102–107 and 100–104 M⊙ for the ionized and hot molecular gas, respectively. The ranges of mass-outflow rates ($$\dot{M}_{\rm out}$$) and kinetic power ($$\dot{E}_{\rm K}$$) of the outflows are 10−3–101 M⊙ yr−1 and ∼1037–1043 erg s−1 for the ionized gas outflows, and 10−5–10−2 M⊙ yr−1 and 1035–1039 erg s−1 for the hot molecular gas outflows. The median coupling efficiency in our sample is $$\dot{E}_{\mathrm{K}}/L_{\rm bol}\approx 1.8\times 10^{-3}$$ and the estimated momentum fluxes of the outflows suggest they are produced by radiation-pressure in low-density environment, with possible contribution from shocks.
more »
« less
Unravelling the physics of multiphase AGN winds through emission line tracers
ABSTRACT Observations of emission lines in active galactic nuclei (AGNs) often find fast (∼1000 km s−1) outflows extending to kiloparsec scales, seen in ionized, neutral atomic and molecular gas. In this work we present radiative transfer calculations of emission lines in hydrodynamic simulations of AGN outflows driven by a hot wind bubble, including non-equilibrium chemistry, to explore how these lines trace the physical properties of the multiphase outflow. We find that the hot bubble compresses the line-emitting gas, resulting in higher pressures than in the ambient interstellar medium or that would be produced by the AGN radiation pressure. This implies that observed emission line ratios such as [O iv]$$_{25 \, \rm {\mu m}}$$ / [Ne ii]$$_{12 \, \rm {\mu m}}$$, [Ne v]$$_{14 \, \rm {\mu m}}$$ / [Ne ii]$$_{12 \, \rm {\mu m}}$$, and [N iii]$$_{57 \, \rm {\mu m}}$$ / [N ii]$$_{122 \, \rm {\mu m}}$$ constrain the presence of the bubble and hence the outflow driving mechanism. However, the line-emitting gas is under-pressurized compared to the hot bubble itself, and much of the line emission arises from gas that is out of pressure, thermal and/or chemical equilibrium. Our results thus suggest that assuming equilibrium conditions, as commonly done in AGN line emission models, is not justified if a hot wind bubble is present. We also find that ≳50 per cent of the mass outflow rate, momentum flux, and kinetic energy flux of the outflow are traced by lines such as [N ii]$$_{122 \, \rm {\mu m}}$$ and [Ne iii]$$_{15 \, \rm {\mu m}}$$ (produced in the 10$$^{4} \, \rm {K}$$ phase) and [C ii]$$_{158 \, \rm {\mu m}}$$ (produced in the transition from 10$$^{4} \, \rm {K}$$ to 100 K).
more »
« less
- Award ID(s):
- 1652522
- PAR ID:
- 10278882
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 503
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 1568 to 1585
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Interstellar chemistry is important for galaxy formation, as it determines the rate at which gas can cool, and enables us to make predictions for observable spectroscopic lines from ions and molecules. We explore two central aspects of modelling the chemistry of the interstellar medium (ISM): (1) the effects of local stellar radiation, which ionizes and heats the gas, and (2) the depletion of metals on to dust grains, which reduces the abundance of metals in the gas phase. We run high-resolution (400 M⊙ per baryonic particle) simulations of isolated disc galaxies, from dwarfs to Milky Way-mass, using the fire galaxy formation models together with the chimes non-equilibrium chemistry and cooling module. In our fiducial model, we couple the chemistry to the stellar fluxes calculated from star particles using an approximate radiative transfer scheme; and we implement an empirical density-dependent prescription for metal depletion. For comparison, we also run simulations with a spatially uniform radiation field, and without metal depletion. Our fiducial model broadly reproduces observed trends in H i and H2 mass with stellar mass, and in line luminosity versus star formation rate for [C ii]$$_{158 \rm {\mu m}}$$, [O i]$$_{63 \rm {\mu m}}$$, [O iii]$$_{88 \rm {\mu m}}$$, [N ii]$$_{122 \rm {\mu m}}$$, and H α6563Å. Our simulations with a uniform radiation field predict fainter luminosities, by up to an order of magnitude for [O iii]$$_{88 \rm {\mu m}}$$ and H α6563Å, while ignoring metal depletion increases the luminosity of carbon and oxygen lines by a factor ≈ 2. However, the overall evolution of the galaxy is not strongly affected by local stellar fluxes or metal depletion, except in dwarf galaxies where the inclusion of local fluxes leads to weaker outflows and hence higher gas fractions.more » « less
-
Abstract We study the ionization and excitation structure of the interstellar medium in the late-stage gas-rich galaxy merger NGC 6240 using a suite of emission-line maps at ∼25 pc resolution from the Hubble Space Telescope, Keck/NIRC2 with Adaptive Optics, and the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 6240 hosts a superwind driven by intense star formation and/or one or both of two active nuclei; the outflows produce bubbles and filaments seen in shock tracers from warm molecular gas (H22.12μm) to optical ionized gas ([Oiii], [Nii], [Sii], and [Oi]) and hot plasma (FeXXV). In the most distinct bubble, we see a clear shock front traced by high [Oiii]/Hβand [Oiii]/[Oi]. Cool molecular gas (CO(2−1)) is only present near the base of the bubble, toward the nuclei launching the outflow. We interpret the lack of molecular gas outside the bubble to mean that the shock front is not responsible for dissociating molecular gas, and conclude that the molecular clouds are partly shielded and either entrained briefly in the outflow, or left undisturbed while the hot wind flows around them. Elsewhere in the galaxy, shock-excited H2extends at least ∼4 kpc from the nuclei, tracing molecular gas even warmer than that between the nuclei, where the two galaxies’ interstellar media are colliding. A ridgeline of high [Oiii]/Hβemission along the eastern arm aligns with the southern nucleus’ stellar disk minor axis; optical integral field spectroscopy from WiFeS suggests this highly ionized gas is centered at systemic velocity and likely photoionized by direct line of sight to the southern active galactic nucleus.more » « less
-
We report molecular gas observations of IRAS 20100-4156 and IRAS 03158+4227, two local ultraluminous infrared galaxies (ULIRGs) hosting some of the fastest and most massive molecular outflows known. Using ALMA and PdBI observations, we spatially resolve the CO(1-0) emission from the outflowing molecular gas in both and find maximum outflow velocities of $$ v_{\rm max} \sim 1600$$ and $$\sim 1700$$ km/s for IRAS 20100-4156 and IRAS 03158+4227, respectively. We find total gas mass outflow rates of $$\dot M_{\rm OF} \sim 670$$ and $$\sim 350$$ Msun/yr, respectively, corresponding to molecular gas depletion timescales $$\tau^{\rm dep}_{\rm OF} \sim 11$$ and $$\sim 16$$ Myr. This is nearly 3 times shorter than the depletion timescales implied by star formation, $$\tau^{\rm dep}_{\rm SFR} \sim 33$$ and $$\sim 46$$ Myr, respectively. To determine the outflow driving mechanism, we compare the starburst ($$L_{*}$$) and AGN ($$L_{\rm AGN}$$) luminosities to the outflowing energy and momentum fluxes, using mid-infrared spectral decomposition to discern $$L_{\rm AGN}$$. Comparison to other molecular outflows in ULIRGs reveals that outflow properties correlate similarly with $$L_{*}$$ and $$L_{\rm IR}$$ as with $$L_{\rm AGN}$$, indicating that AGN luminosity alone may not be a good tracer of feedback strength and that a combination of AGN and starburst activity may be driving the most powerful molecular outflows. We also detect the OH 1.667 GHz maser line from both sources and demonstrate its utility in detecting molecular outflows.more » « less
-
ABSTRACT We report the detection of the far-infrared (FIR) fine-structure line of singly ionized nitrogen, [N ii] 205 $$\mu$$m , within the peak epoch of galaxy assembly, from a strongly lensed galaxy, hereafter ‘The Red Radio Ring’; the RRR, at z = 2.55. We combine new observations of the ground-state and mid-J transitions of CO (Jup = 1, 5, 8), and the FIR spectral energy distribution (SED), to explore the multiphase interstellar medium (ISM) properties of the RRR. All line profiles suggest that the H ii regions, traced by [N ii] 205 $$\mu$$m , and the (diffuse and dense) molecular gas, traced by CO, are cospatial when averaged over kpc-sized regions. Using its mid-IR-to-millimetre (mm) SED, we derive a non-negligible dust attenuation of the [N ii] 205 $$\mu$$m line emission. Assuming a uniform dust screen approximation results a mean molecular gas column density >1024 cm−2, with a molecular gas-to-dust mass ratio of 100. It is clear that dust attenuation corrections should be accounted for when studying FIR fine-structure lines in such systems. The attenuation corrected ratio of $$L_{\rm N\,{\small II}205} / L_{\rm IR(8\!-\!1000\, \mu m)} = 2.7 \times 10^{-4}$$ is consistent with the dispersion of local and z > 4 SFGs. We find that the lower limit, [N ii] 205 $$\mu$$m -based star formation rate (SFR) is less than the IR-derived SFR by a factor of 4. Finally, the dust SED, CO line SED, and $$L_{\rm N\,{\small II}205}$$ line-to-IR luminosity ratio of the RRR is consistent with a starburst-powered ISM.more » « less
An official website of the United States government

