skip to main content


Title: Pulsational pair-instability supernovae in gravitational-wave and electromagnetic transients
ABSTRACT

Current observations of binary black hole (BBH) merger events show support for a feature in the primary BH-mass distribution at $\sim \, 35 \ \mathrm{M}_{\odot }$, previously interpreted as a signature of pulsational pair-instability supernovae (PPISNe). Such supernovae are expected to map a wide range of pre-supernova carbon–oxygen (CO) core masses to a narrow range of BH masses, producing a peak in the BH mass distribution. However, recent numerical simulations place the mass location of this peak above $50 \ \mathrm{M}_{\odot }$. Motivated by uncertainties in the progenitor’s evolution and explosion mechanism, we explore how modifying the distribution of BH masses resulting from PPISN affects the populations of gravitational-wave (GW) and electromagnetic (EM) transients. To this end, we simulate populations of isolated BBH systems and combine them with cosmic star formation rates. Our results are the first cosmological BBH-merger predictions made using the binary_c rapid population synthesis framework. We find that our fiducial model does not match the observed GW peak. We can only explain the $35 \ \mathrm{M}_{\odot }$ peak with PPISNe by shifting the expected CO core-mass range for PPISN downwards by $\sim {}15 \ \mathrm{M}_{\odot }$. Apart from being in tension with state-of-the art stellar models, we also find that this is likely in tension with the observed rate of hydrogen-less super-luminous supernovae. Conversely, shifting the mass range upward, based on recent stellar models, leads to a predicted third peak in the BH mass function at $\sim {}64 \ \mathrm{M}_{\odot }$. Thus we conclude that the $\sim {}35 \ \mathrm{M}_{\odot }$ feature is unlikely to be related to PPISN.

 
more » « less
NSF-PAR ID:
10469609
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
526
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4130-4147
Size(s):
["p. 4130-4147"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The black hole (BH) masses measured from gravitational wave observations appear to cluster around specific mass values. Consequently, the primary (and chirp) mass distribution of binary black holes (BBHs) inferred using these measurements shows four emerging peaks. These peaks are approximately located at a primary (chirp) mass value of 10 $\, \mathrm{M}_\odot$ (8$\, \mathrm{M}_\odot$), 20 $\, \mathrm{M}_\odot$ (14 $\, \mathrm{M}_\odot$), 35 $\, \mathrm{M}_\odot$ (28 $\, \mathrm{M}_\odot$), and 63 $\, \mathrm{M}_\odot$ (49 $\, \mathrm{M}_\odot$). Although the presence of the first and third peaks has been attributed to BBH formation in star clusters or due to the evolution of stellar binaries in isolation, the second peak has received relatively less attention because it lacks significance in the primary mass distribution. In this article, we report that confidence in the second peak depends on the mass parameter we choose to model the population on. Unlike primary mass, this peak is significant when modelled on the chirp mass. We discuss the disparity as a consequence of mass asymmetry in the observations that cluster at the second peak. Finally, we report this asymmetry as part of a potential trend in the mass ratio distribution manifested as a function of the chirp mass, but not as a function of primary mass, when we include the observation GW190814 in our modelling. The chirp mass is not a parameter of astrophysical relevance. Features present in the chirp mass, but not in the primary mass, are relatively difficult to explain and expected to garner significant interest.

     
    more » « less
  2. ABSTRACT

    The launch of space-based gravitational-wave (GW) detectors (e.g. Laser Interferometry Space Antenna; LISA) and current and upcoming Pulsar Timing Arrays will extend the GW window to low frequencies, opening new investigations into dynamical processes involving massive black hole binaries (MBHBs) and their mergers across cosmic time. MBHBs are expected to be among the primary sources for the upcoming low-frequency (10−4–10−1 Hz) window probed by LISA. It is important to investigate the expected supermassive BH merger rates and associated signals, to determine how potential LISA events are affected by physics included in current models. To study this, we post-process the large population of MBHBs in the Illustris simulation to account for dynamical friction time delays associated with BH infall/inspiral. We show that merger delays associated with binary evolution have the potential to decrease the expected merger rates, with $M_{\rm {BH}}\ \gt\ 10^6\ \mathrm{M}_\odot$ MBHBs (the lowest mass in Illustris) decreasing from ∼3 to ∼0.1 yr−1, and shifting the merger peak from z ∼2 to ∼1.25. During this time, we estimate that accretion grows the total merging mass by as much as 7x the original mass. Importantly, however, dynamical friction-associated delays (which shift the mergers toward lower redshift and higher masses) lead to a stronger signal/strain for the emitted GWs in the LISA band, increasing mean frequency from 10−3.1 to 10−3.4–10−4.0 Hz, and mean strain from 10−17.2 to 10−16.3–10−15.3. Finally, we show that after including a merger delay and associated MBH growth, mergers still tend to lie on the typical MBH–M* relation, but with an increased likelihood of an undermassive BH.

     
    more » « less
  3. ABSTRACT Recent gravitational wave (GW) observations by LIGO/Virgo show evidence for hierarchical mergers, where the merging BHs are the remnants of previous BH merger events. These events may carry important clues about the astrophysical host environments of the GW sources. In this paper, we present the distributions of the effective spin parameter (χeff), the precession spin parameter (χp), and the chirp mass (mchirp) expected in hierarchical mergers. Under a wide range of assumptions, hierarchical mergers produce (i) a monotonic increase of the average of the typical total spin for merging binaries, which we characterize with $\scriptstyle{{\bar{\chi }}_\mathrm{typ}\equiv \overline{(\chi _\mathrm{eff}^2+\chi _\mathrm{p}^2)^{1/2}}}$, up to roughly the maximum mchirp among first-generation (1g) BHs, and (ii) a plateau at ${\bar{\chi }}_\mathrm{typ}\sim 0.6$ at higher mchirp. We suggest that the maximum mass and typical spin magnitudes for 1g BHs can be estimated from ${\bar{\chi }}_\mathrm{typ}$ as a function of mchirp. The GW data observed in LIGO/Virgo O1–O3a prefers an increase in ${\bar{\chi }}_\mathrm{typ}$ at low mchirp, which is consistent with the growth of the BH spin magnitude by hierarchical mergers at ∼2σ confidence. A Bayesian analysis using the χeff, χp, and mchirp distributions suggests that 1g BHs have the maximum mass of ∼15–$30\, {\rm M}_\odot$ if the majority of mergers are of high-generation BHs (not among 1g–1g BHs), which is consistent with mergers in active galactic nucleus discs and/or nuclear star clusters, while if mergers mainly originate from globular clusters, 1g BHs are favoured to have non-zero spin magnitudes of ∼0.3. We also forecast that signatures for hierarchical mergers in the ${\bar{\chi }}_\mathrm{typ}$ distribution can be confidently recovered once the number of GW events increases to ≳ O(100). 
    more » « less
  4. ABSTRACT

    In the near future, projects like Laser Interferometer Space Antenna (LISA) and pulsar timing arrays are expected to detect gravitational waves from mergers between supermassive black holes, and it is crucial to precisely model the underlying merger populations now to maximize what we can learn from this new data. Here, we characterize expected high-redshift (z > 2) black hole mergers using the very large volume Astrid cosmological simulation, which uses a range of seed masses to probe down to low-mass black holes (BHs), and directly incorporates dynamical friction so as to accurately model the dynamical processes that bring black holes to the galaxy centre where binary formation and coalescence will occur. The black hole populations in Astrid include black holes down to $\sim 10^{4.5} \, \mathrm{M}_\odot$, and remain broadly consistent with the TNG simulations at scales $\gt 10^6 \, \mathrm{M}_\odot$ (the seed mass used in TNG). By resolving lower mass black holes, the overall merger rate is ∼5× higher than in TNG. However, incorporating dynamical friction delays mergers compared to a recentring scheme, reducing the high-z merger rate mass-matched mergers by a factor of ∼2×. We also calculate the expected LISA signal-to-noise values, and show that the distribution peaks at high SNR (>100), emphasizing the importance of implementing a seed mass well below LISA’s peak sensitivity ($\sim 10^6 \, \mathrm{M}_\odot$) to resolve the majority of LISA’s gravitational wave detections.

     
    more » « less
  5. ABSTRACT

    Formation of supermassive black holes (BHs) remains a theoretical challenge. In many models, especially beginning from stellar relic ‘seeds,’ this requires sustained super-Eddington accretion. While studies have shown BHs can violate the Eddington limit on accretion disc scales given sufficient ‘fuelling’ from larger scales, what remains unclear is whether or not BHs can actually capture sufficient gas from their surrounding interstellar medium (ISM). We explore this in a suite of multiphysics high-resolution simulations of BH growth in magnetized, star-forming dense gas complexes including dynamical stellar feedback from radiation, stellar mass-loss, and supernovae, exploring populations of seeds with masses $\sim 1\!-\!10^{4}\, \mathrm{M}_{\odot }$. In this initial study, we neglect feedback from the BHs: so this sets a strong upper limit to the accretion rates seeds can sustain. We show that stellar feedback plays a key role. Complexes with gravitational pressure/surface density below $\sim 10^{3}\, \mathrm{M}_{\odot }\, {\rm pc^{-2}}$ are disrupted with low star formation efficiencies so provide poor environments for BH growth. But in denser cloud complexes, early stellar feedback does not rapidly destroy the clouds but does generate strong shocks and dense clumps, allowing $\sim 1{{\ \rm per\ cent}}$ of randomly initialized seeds to encounter a dense clump with low relative velocity and produce runaway, hyper-Eddington accretion (growing by orders of magnitude). Remarkably, mass growth under these conditions is almost independent of initial BH mass, allowing rapid intermediate-mass black hole (IMBH) formation even for stellar-mass seeds. This defines a necessary (but perhaps not sufficient) set of criteria for runaway BH growth: we provide analytic estimates for the probability of runaway growth under different ISM conditions.

     
    more » « less