Abstract BackgroundComputational approaches in STEM foster creative extrapolations of ideas that extend the bounds of human perception, processing, and sense-making. Inviting teachers to explore computational approaches in STEM presents opportunities to examine shifting relationships to inquiry that support transdisciplinary learning in their classrooms. Similarly, play has long been acknowledged as activity that supports learners in taking risks, exploring the boundaries and configurations of existing structures, and imagining new possibilities. Yet, play is often overlooked as a crucial element of STEM learning, particularly for adolescents and adults. In this paper, we explorecomputational playas an activity that supports teachers’ transdisciplinary STEM learning. We build from an expansive notion of computational activity that involves jointly co-constructing and co-exploring rule-based systems in conversation with materials, collaborators, and communities to work towards jointly defined goals. We situate computation within STEM-rich making as a playful context for engaging in authentic, creative inquiry. Our research asksWhat are the characteristics of play and computation within computational play? And, in what ways does computational play contribute to teachers’ transdisciplinary learning? ResultsTeachers from grades 3–12 participated in a professional learning program that centered playful explorations of materials and tools using computational approaches: making objects based on rules that produce emergent behaviors and iterating on those rules to observe the effects on how the materials behaved. Using a case study and descriptions of the characteristics of computational play, our results show how familiarity of materials and the context of play encouraged teachers to engage in transdisciplinary inquiry, to ask questions about how materials behave, and to renegotiate their own relationships to disciplinary learning as they reflected on their work. ConclusionsWe argue computational play is a space of wonderment where iterative conversations with materials create opportunities for learners to author forms of transdisciplinary learning. Our results show how teachers and students can learn together in computational play, and we conclude this work can contribute to ongoing efforts in the design of professional and transdisciplinary learning environments focused on the intersections of materiality, play, and computation.
more »
« less
Chronicles of Exploration: Examining the Materiality of Computational Artifacts
Artistic computing learning environments have been of central importance in the exploration of how to support equity and inclusion in computing. Explorations within e-textiles, music, and interactive media, for example, have created diverse opportunities for learning how to program while creating culturally relevant artifacts. However, there is a gap in our understanding of the design processes of learners in these constructionist environments, including how the computational artifacts and their components impact the learning processes and the ways they build meaning and agency with computing. We advocate for research to attend more closely to the materiality of the computational materials to understand how they impact the social and cultural dimensions in which students are learning. In this paper, we present an analysis of 6 high school learners’ experiences within a co-designed arts and computing curriculum. Our analyses highlight how the materiality of the components impacted the ways in which learners developed personal and epistemological connections to computing based on how it enabled them to connect to their interests, represent their ideas, engage with their community, and overcome or navigate around challenges to get to their final designs. We demonstrate how centralizing the materiality in the design of computational construction kits can inform how we support agency and engagement with computing.
more »
« less
- Award ID(s):
- 2008116
- PAR ID:
- 10469677
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9781450399760
- Page Range / eLocation ID:
- 29 to 47
- Format(s):
- Medium: X
- Location:
- Chicago IL USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To make computer science (CS) more equitable, many educational efforts are shifting foci from access and content understanding to include identification, agency, and social change. As part of these efforts, we look at how learners perceive themselves in relation to what they believe CS is and what it means to participate in CS. Informed by three design lenses, unblackboxing, culturally responsive computing, and creative production, we designed a physical computing kit and activities. Drawing from qualitative analysis of interviews, artifacts, and observation of six young people in a weeklong summer workshop, we report on the experiences of two young Black women designers. We found that using these materials young people were able to: leverage personal goals and prior experiences in computing work; feel as if they were figuring out computing systems; and recognize computational technologies as created by people for particular purposes. We observed that while the mix of materials and activities created some frustration for participants, it also prompted processes of community building and inquiry. We discuss implications for design of computational tools in equity-centered CS education and pose seamfulness as an emergent heuristic when designing for learning that engages young people with the social, not just material, systems of computing.more » « less
-
PurposeThere is a need for precollege learning designs that empower youth to be epistemic agents in contexts that intersect burgeoning areas of computing, big data and social media. The purpose of this study is to explore how “sandbox” or open-inquiry data science with social media supports learning. Design/methodology/approachThis paper offers vignettes from an illustrative youth study case that highlights the pedagogical prospects and obstacles tied to designing for open-ended inquiry with computational data science to access or “scrape” Twitter/X. The youth case showcases how social media can be taken up productively and in ways that facilitate epistemological agency, an approach where individuals actively shape understanding and knowledge-creation processes, highlighting the potentially transformative impact this approach might have in empowering learners to engage productively. FindingsThe authors identify three key affordances for learning that emerged from the illustrative case: (1) flexible opportunities for content-specific domain mastery, (2) situated inquiry that embodies next-generation science practices and (3) embedded computational skill development. The authors discuss these findings in relation to contemporary education needs to broaden participation in data science and computing. Originality/valueTo address challenges in current data science education associated with supporting sustained and productive engagement in computing-based data science, the authors leverage a “sandbox” approach – an original pedagogical framework to support open inquiry with precollege groups. The authors demonstrate how “big data” drawn from social media with high school-aged youth supports learning designs and outcomes by emphasizing learner interests and authentic practice.more » « less
-
Performing arts computing environments have received little attention in the educational sphere; yet, they offer opportunities for learners to validate their efforts, ideas, and skills through showcasing their work in a public-facing performance. In this work, we explore an out-of-school dance and computing educational program run by the organization, STEM From Dance. The organizational mission is to create an equitable learning experience for young women of color to engage with computing while exposing them to STEM careers. Through an analysis of eleven interviews with youth participants, instructors, and the executive director, we examine how the social, cultural, and political dimensions of the learning environment facilitate identity work in computing and dance. Our findings point to three primary activities used by the organization to promote equity: (1) providing psychological safety through a supportive community environment, (2) meaningfully engaging with learners’ social and cultural context through creative work with constructionist artifacts, and (3) actively promoting identity work as women of color in computing and STEM through both artifact work and community events. Applying the constructs of identity and psychological safety we explore the tensions and synergies of designing for equity in this performing arts and computing learning environment. We demonstrate how the seemingly contradictory elements of a high-stakes performance within a novice learning environment provides unique opportunities for supporting young women of color in computing, making them non-negotiable in the organization’s efforts to promote equity and inclusion. Our work illustrates how attending closely to the sociocultural dimensions in a constructionist learning environment provides lenses for navigating equity, identity work, and support for inclusive computing.more » « less
-
Blikstein, P; Van_Aalst, J; Kizito, R; Brennan, K (Ed.)Public critiques of technologies and the algorithms that power them have pushed designers to critically consider for whom they design and who they include in design processes. In education, similar critiques highlight how computational technologies designed for novice learners commonly privilege certain ways of knowing and being. In response, this poster explores how the cultural construct of time is represented across computational platforms for novices and what this means, particularly for Indigenous learners and designers.more » « less