skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Infection prediction in swine populations with machine learning
Abstract The pork industry is an essential part of the global food system, providing a significant source of protein for people around the world. A major factor restraining productivity and compromising animal wellbeing in the pork industry is disease outbreaks in pigs throughout the production process: widespread outbreaks can lead to losses as high as 10% of the U.S. pig population in extreme years. In this study, we present a machine learning model to predict the emergence of infection in swine production systems throughout the production process on a daily basis, a potential precursor to outbreaks whose detection is vital for disease prevention and mitigation. We determine features that provide the most value in predicting infection, which include nearby farm density, historical test rates, piglet inventory, feed consumption during the gestation period, and wind speed and direction. We utilize these features to produce a generalizable machine learning model, evaluate the model’s ability to predict outbreaks both seven and 30 days in advance, allowing for early warning of disease infection, and evaluate our model on two swine production systems and analyze the effects of data availability and data granularity in the context of our two swine systems with different volumes of data. Our results demonstrate good ability to predict infection in both systems with a balanced accuracy of$$85.3\%$$ 85.3 % on any disease in the first system and balanced accuracies (average prediction accuracy on positive and negative samples) of$$58.5\%$$ 58.5 % ,$$58.7\%$$ 58.7 % ,$$72.8\%$$ 72.8 % and$$74.8\%$$ 74.8 % on porcine reproductive and respiratory syndrome, porcine epidemic diarrhea virus, influenza A virus, andMycoplasma hyopneumoniaein the second system, respectively, using the six most important predictors in all cases. These models provide daily infection probabilities that can be used by veterinarians and other stakeholders as a benchmark to more timely support preventive and control strategies on farms.  more » « less
Award ID(s):
1838207
PAR ID:
10469700
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A method for modelling the prompt production of molecular states using the hadronic rescattering framework of the general-purpose Pythia event generator is introduced. Production cross sections of possible exotic hadronic molecules via hadronic rescattering at the LHC are calculated for the$$\chi _{c1}(3872)$$ χ c 1 ( 3872 ) resonance, a possible tetraquark state, as well as three possible pentaquark states,$$P_c^+(4312)$$ P c + ( 4312 ) ,$$P_c^+(4440)$$ P c + ( 4440 ) , and$$P_c^+(4457)$$ P c + ( 4457 ) . For the$$P_c^+$$ P c + states, the expected cross section from$$\Lambda _b$$ Λ b decays is compared to the hadronic-rescattering production. The$$\chi _{c1}(3872)$$ χ c 1 ( 3872 ) cross section is compared to the fiducial$$\chi _{c1}(3872)$$ χ c 1 ( 3872 ) cross-section measurement by LHCb and found to contribute at a level of$${\mathcal {O}({1\%})}$$ O ( 1 % ) . Finally, the expected yields of$$\mathrm {P_c^{+}}$$ P c + production from hadronic rescattering during Run 3 of LHCb are estimated. The prompt background is found to be significantly larger than the prompt$$\mathrm {P_c^{+}}$$ P c + signal from hadronic rescattering. 
    more » « less
  2. Abstract Measurements of Higgs boson production, where the Higgs boson decays into a pair of$$\uptau $$ τ leptons, are presented, using a sample of proton-proton collisions collected with the CMS experiment at a center-of-mass energy of Equation missing<#comment/>, corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$ fb - 1 . Three analyses are presented. Two are targeting Higgs boson production via gluon fusion and vector boson fusion: a neural network based analysis and an analysis based on an event categorization optimized on the ratio of signal over background events. These are complemented by an analysis targeting vector boson associated Higgs boson production. Results are presented in the form of signal strengths relative to the standard model predictions and products of cross sections and branching fraction to$$\uptau $$ τ leptons, in up to 16 different kinematic regions. For the simultaneous measurements of the neural network based analysis and the analysis targeting vector boson associated Higgs boson production signal strengths are found to be$$0.82\pm 0.11$$ 0.82 ± 0.11 for inclusive Higgs boson production,$$0.67\pm 0.19$$ 0.67 ± 0.19 ($$0.81\pm 0.17$$ 0.81 ± 0.17 ) for the production mainly via gluon fusion (vector boson fusion), and$$1.79\pm 0.45$$ 1.79 ± 0.45 for vector boson associated Higgs boson production. 
    more » « less
  3. Abstract This paper presents the observation of four-top-quark ($$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ ) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 $$\hbox {fb}^{-1}$$ fb - 1 at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured$$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The$$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ production cross section is measured to be$$22.5^{+6.6}_{-5.5}$$ 22 . 5 - 5.5 + 6.6  fb, consistent with the SM prediction of$$12.0 \pm 2.4$$ 12.0 ± 2.4 fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect$$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ production. 
    more » « less
  4. Abstract The total charm-quark production cross section per unit of rapidity$$\textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y$$ d σ ( c c ¯ ) / d y , and the fragmentation fractions of charm quarks to different charm-hadron species$$f(\textrm{c}\rightarrow {\textrm{h}}_{\textrm{c}})$$ f ( c h c ) , are measured for the first time in p–Pb collisions at$$\sqrt{s_\textrm{NN}} = 5.02~\text {Te}\hspace{-1.00006pt}\textrm{V} $$ s NN = 5.02 Te V at midrapidity ($$-0.96<0.04$$ - 0.96 < y < 0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species:$$\textrm{D}^{0}$$ D 0 ,$$\textrm{D}^{+}$$ D + ,$$\textrm{D}_\textrm{s}^{+}$$ D s + , and$$\mathrm {J/\psi }$$ J / ψ mesons, and$$\Lambda _\textrm{c}^{+}$$ Λ c + and$$\Xi _\textrm{c}^{0}$$ Ξ c 0 baryons. The resulting cross section is$$ \textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y =219.6 \pm 6.3\;(\mathrm {stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm {syst.}) {\;}_{-2.9}^{+8.3}\;(\mathrm {extr.})\pm 5.4\;(\textrm{BR})\pm 4.6\;(\mathrm {lumi.}) \pm 19.5\;(\text {rapidity shape})+15.0\;(\Omega _\textrm{c}^{0})\;\textrm{mb} $$ d σ ( c c ¯ ) / d y = 219.6 ± 6.3 ( stat . ) - 11.8 + 10.5 ( syst . ) - 2.9 + 8.3 ( extr . ) ± 5.4 ( BR ) ± 4.6 ( lumi . ) ± 19.5 ( rapidity shape ) + 15.0 ( Ω c 0 ) mb , which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at$$\sqrt{s} = 5.02$$ s = 5.02 and 13 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with$$\mathrm {e^{+}e^{-}}$$ e + e - and$$\mathrm {e^{-}p}$$ e - p collisions. The$$p_\textrm{T}$$ p T -integrated nuclear modification factor of charm quarks,$$R_\textrm{pPb}({\textrm{c}}\overline{\textrm{c}})= 0.91 \pm 0.04\;\mathrm{(stat.)} ^{+0.08}_{-0.09}\;\mathrm{(syst.)} ^{+0.05}_{-0.03}\;\mathrm{(extr.)} \pm 0.03\;\mathrm{(lumi.)}$$ R pPb ( c c ¯ ) = 0.91 ± 0.04 ( stat . ) - 0.09 + 0.08 ( syst . ) - 0.03 + 0.05 ( extr . ) ± 0.03 ( lumi . ) , is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions. 
    more » « less
  5. Abstract The transverse momentum ($$p_{\textrm{T}}$$ p T ) differential production cross section of the promptly produced charm-strange baryon$$\mathrm {\Xi _{c}^{0}}$$ Ξ c 0 (and its charge conjugate$$\overline{\mathrm {\Xi _{c}^{0}}}$$ Ξ c 0 ¯ ) is measured at midrapidity via its hadronic decay into$$\mathrm{\pi ^{+}}\Xi ^{-}$$ π + Ξ - in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02  TeV with the ALICE detector at the LHC. The$$\mathrm {\Xi _{c}^{0}}$$ Ξ c 0 nuclear modification factor ($$R_{\textrm{pPb}}$$ R pPb ), calculated from the cross sections in pp and p–Pb collisions, is presented and compared with the$$R_{\textrm{pPb}}$$ R pPb of$$\mathrm {\Lambda _{c}^{+}}$$ Λ c + baryons. The ratios between the$$p_{\textrm{T}}$$ p T -differential production cross section of$$\mathrm {\Xi _{c}^{0}}$$ Ξ c 0 baryons and those of$$\mathrm {D^0}$$ D 0 mesons and$$\mathrm {\Lambda _{c}^{+}}$$ Λ c + baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt$$\Xi ^0_\textrm{c}$$ Ξ c 0 baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p–Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The$$p_{\textrm{T}}$$ p T -integrated cross section of prompt$$\Xi ^0_\textrm{c}$$ Ξ c 0 -baryon production at midrapidity extrapolated down to$$p_{\textrm{T}}$$ p T = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p–Pb collisions at midrapidity. 
    more » « less