Abstract Despite advances in creating dissipative materials with transient properties, such as hydrogels and active droplets, their application remains confined to temporal changes in structural properties. Developing out‐of‐equilibrium materials whose electronic functions are parameterized by a chemical reaction cycle is challenging. Yet, this class of materials is required to construct biomimetic materials. In contrast to traditional chemical reaction cycles that exploit molecularly dissolved building blocks at thermodynamic equilibrium, we show that fiber structures derived from reactive naphthalene diimide (NDI) building blocks can be used as resting states to form far‐from‐equilibrium conductive hydrogels after the addition of chemical fuels. Upon fueling the NDI‐derived fibers, a dual‐component activation and deactivation pathway is deduced by kinetic analysis and is absent when using a molecularly dissolved resting state. Investigating the solid‐state morphologies of the structures formed throughout the fuel‐driven reaction cycle using cryo‐EM reveals that the resting thermodynamic fibers evolve to transient thicker fibrils and layered superstructures. We show that the transient redox‐active hydrogels exhibit a nearly threefold increase in electrical conductivity upon fuel consumption before reverting to their original value over hours. These far‐from‐equilibrium materials are potential candidates in applications such as programmable biorobotics and chemical computing.
more »
« less
Transient and Dissipative Host–Guest Hydrogels Regulated by Consumption of a Reactive Chemical Fuel
Abstract The transient self‐assembly of molecules under the direction of a consumable fuel source is fundamental to biological processes such as cellular organization and motility. Such biomolecular assemblies exist in an out‐of‐equilibrium state, requiring continuous consumption of high energy molecules. At the same time, the creation of bioinspired supramolecular hydrogels has traditionally focused on associations occurring at the thermodynamic equilibrium state. Here, hydrogels are prepared from cucurbit[7]uril host–guest supramolecular interactions through transient physical crosslinking driven by the consumption of a reactive chemical fuel. Upon action from this fuel, the affinity and dynamics of CB[7]–guest recognition are altered. In this way, the lifetime of transient hydrogel formation and the dynamic modulus obtained are governed by fuel consumption, rather than being directed by equilibrium complex formation.
more »
« less
- Award ID(s):
- 1944875
- PAR ID:
- 10392816
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 135
- Issue:
- 11
- ISSN:
- 0044-8249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-linking on macromolecule diffusion must be better understood. Here, hydrogel networks with identical topology but disparate cross-link dynamics are explored. These materials are prepared from cross-linking with host–guest complexes of the cucurbit[7]uril (CB[7]) macrocycle and two guests of different affinity. Rheology confirms differences in bulk material dynamics arising from differences in cross-link thermodynamics. Fluorescence recovery after photobleaching (FRAP) provides insight into macromolecule diffusion as a function of probe molecular weight and hydrogel network dynamics. Together, both rheology and FRAP enable the estimation of the mean network mesh size, which is then related to the solute hydrodynamic diameters to further understand macromolecule diffusion. Interestingly, the thermodynamics of host–guest cross-linking are correlated with a marked deviation from classical diffusion behavior for higher molecular weight probes, yielding solute aggregation in high-affinity networks. These studies offer insights into fundamental macromolecular transport phenomena as they relate to the association dynamics of supramolecular networks. Translation of these materials from in vitro to in vivo is also assessed by bulk release of an encapsulated macromolecule. Contradictory in vitro to in vivo results with inverse relationships in release between the two hydrogels underscores the caution demanded when translating supramolecular biomaterials into application.more » « less
-
Abstract The combination of multiple orthogonal interactions enables hierarchical complexity in self‐assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host–guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010m−1, directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower‐affinity β‐cyclodextrin–adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high‐affinity CB[7]–adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high‐affinity CB[7]–guest recognition as an orthogonal axis to drive self‐assembly in DNA nanotechnology.more » « less
-
The spatiotemporal regulation of chemical reactivity in biological systems permits a network of metabolic reactions to take place within the same cellular environment. The exquisite control of reactivity is often mediated by out-of-equilibrium structures that remain functional only as long as fuel is present to maintain the higher energy, active state. An important goal in supramolecular chemistry aims to develop functional, energy dissipating systems that approach the sophistication of biological machinery. The challenge is to create strategies that couple the energy consumption needed to promote a molecule to a higher energy, assembled state to a functional property such as catalytic activity. In this work, we demonstrated that the assembly of a spiropyran (SP) dipeptide (1) transiently promoted the proline-catalyzed aldol reaction in water when visible light was present as fuel. The transient catalytic activity emerged from 1 under light illumination due to the photoisomerization of the monomeric, O -protonated (1-MCH + ) merocyanine form to the spiropyran (1-SP) state, which rapidly assembled into nanosheets capable of catalyzing the aldol reaction in water. When the light source was removed, thermal isomerization to the more stable MCH + form caused the nanosheets to dissociate into a catalytically inactive, monomeric state. Under these conditions, the aldol reaction could be repeatedly activated and deactivated by switching the light source on and off.more » « less
An official website of the United States government
