skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vertex algebras of CohFT-type
Representations of certain vertex algebras, here called of CohFT-type, can be used to construct vector bundles of coinvariants and conformal blocks on moduli spaces of stable curves [DGT2]. We show that such bundles define semisimple cohomological field theories. As an application, we give an expression for their total Chern character in terms of the fusion rules, following the approach and computation in [MOPPZ] for bundles given by integrable modules over affine Lie algebras. It follows that the Chern classes are tautological. Examples and open problems are discussed.  more » « less
Award ID(s):
2200862
PAR ID:
10469754
Author(s) / Creator(s):
Corporate Creator(s):
Editor(s):
Paolo Aluffi, David Anderson
Publisher / Repository:
Cambridge University Press, Cambridge,
Date Published:
Edition / Version:
1
Volume:
472
Issue:
1
ISSN:
NA
ISBN:
978-1-108-79250-9
Page Range / eLocation ID:
164–189
Subject(s) / Keyword(s):
Vertex algebras conformal blocks and coinvariants moduli of curves cohomological field theories tautological classes vector bundles.
Format(s):
Medium: X Size: 2MB Other: xls
Size(s):
2MB
Location:
Facets of algebraic geometry. Vol. I., London Math. Soc. Lecture Note Ser., 472
Sponsoring Org:
National Science Foundation
More Like this
  1. Sam Payne, et al (Ed.)
    Representations of certain vertex algebras, here called of CohFT-type, can be used to construct vector bundles of coinvariants and conformal blocks on moduli spaces of stable curves [DGT2]. We show that such bundles define semisimple cohomological field theories. As an application, we give an expression for their total Chern character in terms of the fusion rules, following the approach and computation in [MOP+2] for bundles given by integrable modules over ane Lie alge- bras. It follows that the Chern classes are tautological. Examples and open problems are discussed. 
    more » « less
  2. Abstract We use the geometry of the stellahedral toric variety to study matroids. We identify the valuative group of matroids with the cohomology ring of the stellahedral toric variety and show that valuative, homological and numerical equivalence relations for matroids coincide. We establish a new log-concavity result for the Tutte polynomial of a matroid, answering a question of Wagner and Shapiro–Smirnov–Vaintrob on Postnikov–Shapiro algebras, and calculate the Chern–Schwartz–MacPherson classes of matroid Schubert cells. The central construction is the ‘augmented tautological classes of matroids’, modeled after certain toric vector bundles on the stellahedral toric variety. 
    more » « less
  3. null (Ed.)
    A bstract The superpotential in four-dimensional heterotic effective theories contains terms arising from holomorphic Chern-Simons invariants associated to the gauge and tangent bundles of the compactification geometry. These effects are crucial for a number of key features of the theory, including vacuum stability and moduli stabilization. Despite their importance, few tools exist in the literature to compute such effects in a given heterotic vacuum. In this work we present new techniques to explicitly determine holomorphic Chern-Simons invariants in heterotic string compactifications. The key technical ingredient in our computations are real bundle morphisms between the gauge and tangent bundles. We find that there are large classes of examples, beyond the standard embedding, where the Chern-Simons superpotential vanishes. We also provide explicit examples for non-flat bundles where it is non-vanishing and non-integer quantized, generalizing previous results for Wilson lines. 
    more » « less
  4. Suppose is a smooth complex algebraic variety. A necessary condition for a complex topological vector bundle on (viewed as a complex manifold) to be algebraic is that all Chern classes must be algebraic cohomology classes, that is, lie in the image of the cycle class map. We analyze the question of whether algebraicity of Chern classes is sufficient to guarantee algebraizability of complex topological vector bundles. For affine varieties of dimension , it is known that algebraicity of Chern classes of a vector bundle guarantees algebraizability of the vector bundle. In contrast, we show in dimension that algebraicity of Chern classes is insufficient to guarantee algebraizability of vector bundles. To do this, we construct a new obstruction to algebraizability using Steenrod operations on Chow groups. By means of an explicit example, we observe that our obstruction is nontrivial in general. 
    more » « less
  5. A<sc>bstract</sc> In this paper, we discuss how gauging one-form symmetries in Chern-Simons theories is implemented in an A-twisted topological open string theory. For example, the contribution from a fixed H/Z bundle on a three-manifold M, arising in a BZ gauging of H Chern-Simons, for Z a finite subgroup of the center of H, is described by an open string worldsheet theory whose bulk is a sigma model with target a Z-gerbe (a bundle of one-form symmetries) over TM, of characteristic class determined by the H/Z bundle. We give a worldsheet picture of the decomposition of one-form-symmetry-gauged Chern-Simons in three dimensions, and we describe how a target-space constraint on bundles arising in the gauged Chern-Simons theory has a natural worldsheet realization. Our proposal provides examples of the expected correspondence between worldsheet global higher-form symmetries, and target-space gauged higher-form symmetries. 
    more » « less