The use of geologically stored CO2 as a geothermal heat extraction fluid can take advantage of the beneficial thermophysical characteristics of CO2 that can render it a more effective heat extraction fluid than the brine that exists in the aquifers. Some of these characteristics include a higher mobility (inverse kinematic viscosity) in reservoir conditions and a highly temperature-dependent density that can result in a naturally self-convecting thermosiphon between injection and production wells. This thermosiphon may reduce or eliminate the need for subsurface pumps—and the associated parasitic pumping power—for fluid circulation. Part of the utility of such a CO2 capture, utilization, and storage (CCUS) system is the possibility to generate baseload or dispatchable electricity with levelized costs of electricity (LCOEs) that are on par with the LCOEs of other energy technologies of regional electricity systems. 
                        more » 
                        « less   
                    
                            
                            Analytical Solutions to Evaluate the Geothermal Energy Generation Potential from Sedimentary-Basin Reservoirs
                        
                    
    
            Sedimentary basins are attractive for geothermal development due to their ubiquitous presence, high perme ability, and extensive lateral extent. Geothermal energy from sedimentary basins has mostly been used for direct heating purposes due to their relatively low temperatures, compared to conventional hydrothermal systems. However, there is an increasing interest in using sedimentary geothermal energy for electric power generation due to the advances in conversion technologies using binary cycles that allow electricity generation from reservoir temperatures as low as 80 ◦C. This work develops and implements analytical solutions for calculating reservoir impedance, reservoir heat depletion, and wellbore heat loss in sedimentary reservoirs that are laterally extensive, homogeneous, horizontally isotropic and have uniform thickness. Reservoir impedance and wellbore heat loss solutions are combined with a power cycle model to estimate the electricity generation potential. Results from the analytical solutions are in good agreement with numerically computed reservoir models. Our results suggest that wellbore heat loss can be neglected in many cases of electricity generation calculations, depending on the reservoir transmissivity. The reservoir heat depletion solution shows how reservoir tempera ture and useful lifetime behave as a function of flow rate, initial heat within the reservoir, and heat conduction from the surroundings to the reservoir. Overall, our results suggest that in an exploratory sedimentary geothermal field, these analytical solutions can provide reliable first order estimations without incurring intensive computational costs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1922666
- PAR ID:
- 10469755
- Publisher / Repository:
- Geothermics
- Date Published:
- Journal Name:
- Geothermics
- Volume:
- 116
- Issue:
- C
- ISSN:
- 0375-6505
- Page Range / eLocation ID:
- 102843
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Motivated by Cornell University's aspiration to use geothermal heat to replace fossil fuels to heat campus buildings, a 3-km deep geothermal exploratory well, the Cornell University Borehole Observatory (CUBO), was drilled on the Ithaca, NY campus in the summer of 2022. CUBO extends through largely low porosity and low permeability Paleozoic sedimentary rocks above low-grade metamorphic basement rocks. In order to assess the potential for and inform the design of an operational deep direct-use geothermal system within the US Northeast, the main objective of CUBO is to characterize the subsurface and potential fracture-dominated reservoir targets in both the sedimentary units and basement within a temperature range between 70 – 90 °C. Here we report results of our analysis which provide insight into the hydrologic, thermal, and mechanical conditions at depth and the associated physical rock fracture properties and characteristics. This integrative work incorporates regional well logs and geologic and geophysical data, as well as the CUBO-specific downhole logging and borehole image data collected during drilling operations, subsequent borehole temperature profiling and fluid sampling, downhole dual-packer mini-frac stress tests, and microstructural and physical property analysis of sidewall cores and cuttings. Altogether the knowledge from this information guides decisions regarding the design, depth, and orientation of subsequent injection and production wells at Cornell, as well as highlighting University, and highlights particular geologic targets and strategies for developing an effective and efficient enhanced geothermal reservoir. These comprehensive results, as well as lessons learned regarding the overall approach, can help de-risk decisions regarding the development of deep geothermal energy systems both at Cornell University and elsewhere.more » « less
- 
            Thermal energy harvesting from natural resources and waste heat is becoming critical due to ever-increasing environmental concerns. However, so far, available thermal energy harvesting technologies have only been able to generate electricity from large temperature gradients. Here, we report a fundamental breakthrough in low-grade thermal energy harvesting and demonstrate a device based on the thermomagnetic effect that uses ambient conditions as the heat sink and operates from a heat source at temperatures as low as 24 °C. This concept can convert temperature gradients as low as 2 °C into electricity while operating near room temperature. The device is found to exhibit a power density (power per unit volume of active material) of 105 μW cm −3 at a temperature difference of 2 °C, which increases to 465 μW cm −3 at a temperature difference of 10 °C. The power density increases by 2.5 times in the presence of wind with a speed of 2.0 m s −1 . This advancement in thermal energy harvesting technology will have a transformative effect on renewable energy generation and in reducing global warming.more » « less
- 
            Abstract New geophysical data from Antarctica's Ross Embayment reveal the structure and subglacial geology of extended continental crust beneath the Ross Ice Shelf. We use airborne magnetic data from the ROSETTA‐Ice Project to locate the contact between magnetic basement and overlying sediments. We delineate a broad, segmented basement high with thin (0–500m) non‐magnetic sedimentary cover which trends northward into the Ross Sea's Central High. Before subsiding in the Oligocene, this feature likely facilitated early glaciation in the region and subsequently acted as a pinning point and ice flow divide. Flanking the high are wide sedimentary basins, up to 3700m deep, which parallel the Ross Sea basins and likely formed during Cretaceous‐Neogene intracontinental extension. NW‐SE basins beneath the Siple Coast grounding zone, by contrast, are narrow, deep, and elongate. They suggest tectonic divergence upon active faults that may localize geothermal heat and/or groundwater flow, both important components of the subglacial system.more » « less
- 
            Abstract Water injection and Enhanced Geothermal System (EGS) technologies have been used to exploit heat resources from geothermal reservoirs. Detecting spatial and temporal changes in reservoir physical properties is important for monitoring reservoir condition changes due to water injection and EGS. Here, we determine high‐resolution models of the temporal changes in the three‐dimensionalPwave velocity and attenuation (Vp and Qp) structures between the years 2005 and 2011 in the northwestern part of The Geysers geothermal field, California, using double‐difference seismic velocity and attenuation tomography. The northwest Geysers has a shallow normal temperature reservoir (NTR) underlain by a high temperature reservoir (HTR) that has substantial underutilized heat resources but may be more fully utilized in the future through EGS. In the southeastern part of the northwest Geysers, however, EGS has been successfully but unintentionally applied for at least 50 years because the waters injected into the NTR have been flowing into the HTR. Our models are well resolved in this area and show that the NTR and HTR have different seismic responses (seismicity, Vp, and Qp) to water injection, which can be explained by the injection‐induced differences in fracturing and saturation that are likely related to their geological properties. Our results indicate that the joint analysis of changes in seismicity, velocity, and attenuation is valuable for characterizing changes in reservoir fracturing and saturation conditions. Our results suggest that high‐permeability zones and/or pre‐existing permeable fault zones are important for the success of EGS at The Geysers and potentially other geothermal systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    