skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Millennial‐Scale Oscillation in Latitudinal Temperature Gradients Along the Western North Atlantic During the Mid‐Holocene
Abstract Changes in vegetation in North America indicate Holocene shifts in the latitudinal temperature gradient along the western margin of the North Atlantic. Tree taxa such as oak (Quercus) and birch (Betula) experienced opposing directions of change across different latitudes consistent with changes in temperature gradient steepness. Pollen‐inferred temperatures from 34 sites quantify the gradient changes and reconstruct a long‐term northward steepening in summer and southward steepening in winter. From 4.8 to 3.8 ka, an oscillation in tree distributions interrupted the long‐term trends as a steep temperature gradient developed north of 43.5°N. The shift likely limited cold outbreaks to the south, producing anomalously high summer temperatures at 42–43.5°N, and enabling a northward expansion of oak forests. The forest and temperature gradient changes appear consistent with orbital and ice sheet forcing as well as millennial variability in the North Atlantic pressure field analogous to the North Atlantic Oscillation on interannual time scales.  more » « less
Award ID(s):
1855781 1856047
PAR ID:
10469841
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
20
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Northward ocean heat transport at 26°N in the Atlantic Ocean has been measured since 2004. The ocean heat transport is large—approximately 1.25 PW, and on interannual time scales it exhibits surprisingly large temporal variability. There has been a long-term reduction in ocean heat transport of 0.17 PW from 1.32 PW before 2009 to 1.15 PW after 2009 (2009–16) on an annual average basis associated with a 2.5-Sv (1 Sv ≡ 106 m3 s−1) drop in the Atlantic meridional overturning circulation (AMOC). The reduction in the AMOC has cooled and freshened the upper ocean north of 26°N over an area following the offshore edge of the Gulf Stream/North Atlantic Current from the Bahamas to Iceland. Cooling peaks south of Iceland where surface temperatures are as much as 2°C cooler in 2016 than they were in 2008. Heat uptake by the atmosphere appears to have been affected particularly along the path of the North Atlantic Current. For the reduction in ocean heat transport, changes in ocean heat content account for about one-quarter of the long-term reduction in ocean heat transport while reduced heat uptake by the atmosphere appears to account for the remainder of the change in ocean heat transport. 
    more » « less
  2. White oak, a keystone species of the broadleaf forests of the North American Midwest, has a significant role in providing ecosystems services in a region experiencing warming and increasingly pluvial conditions. A one- hundred-year-old white oak stand in an arboretum, along with two second growth (~200-year-old) stands from Northeast Ohio have consistently responded positively to summer (June-July) precipitation over the past century, whereas four nearby old growth sites (>300 years old) have lost their moisture sensitivity since about the mid 1970s. This “fading drought signal,” which has been previously reported, appears to be more a result of the legacy of land use at the individual sites rather than tree age. The younger oak stands and their relative sustained drought sensitivity is also related to their history of recently attaining the canopy and similar responses associated with intervals of selective logging. All sites are strongly, negatively correlated with summer (June- July) maximum monthly temperatures and in general the maximum temperatures are negatively correlated with precipitation in those months. Future warming in the Midwest is projected to see increases in spring precipitation and likely decreases in late summer precipitation linked to a northward migration of the North American Westerly Jet. This projected decrease in summer precipitation coupled with an increase in maximum and min- imum summer temperatures in the coming decades would increase the moisture stress on these trees. Our ex- amination of these varying climate responses with respect to site characteristics and forest age can help future assessments of tree health and the forest’s ability to sequester carbon, as well as facilitate efforts to reconstruct climate by using a range of tree sites for intervals when sensitivity in old growth sites is lost. 
    more » « less
  3. Abstract Massive, long‐livedSiderastreaandDiploriacorals are species commonly used for sea surface temperature (SST) reconstructions in the North Atlantic. However, they are rarely found to exceed 200 years in age. Thus, it is imperative to continuously develop alternative taxa for paleoreconstructions.Colpophyllia natans, a highly populous tropical North Atlantic coral, are known to grow large colonies, potentially containing environmental records spanning several hundreds of years. However, its low density and complicated architecture poses a challenge in extracting climate signals from this coral. This study presents the first monthly‐resolved climate calibration ofColpophyllia natansand validates its utility as a new paleoarchive, relative toSiderastrea siderea.Linear regressions of monthly and interannual coral Sr/Ca with instrumental SST reveal robust, significant relationships (p < 0.05), indicating that microsampling along a single thecal wall ofC. natansallowed for robust climate reconstructions. Additionally, both corals capture similar SST variations (t‐test,p ≥ 0.05), which allowed for the generation of a single, composite interspecies SST record that correlates with instrumental SST even more strongly (p < 0.0001) than the individual corals. Mean annual and boreal summer interspecies SST correlate significantly with North Atlantic SST indices (p < 0.05), demonstrating the ability to capture regional, long‐term SST trends in the North Atlantic. Spatial correlation maps of boreal winter interspecies SST to instrumental SST and geopotential height anomalies reveal coherent spatial patterns linked to the North Atlantic Oscillation. Our findings suggest thatColpophyllia natanshas enormous potential as a new paleoclimate archive for reconstructing temporal and spatial SST variability in the tropical Atlantic. 
    more » « less
  4. ABSTRACT The Russian Arctic is an extensive region, with relatively few long‐duration paleoclimate reconstructions compared to other terrestrial Arctic regions. We present a 24 000‐year reconstruction of climate in the Polar Ural Mountains usingn‐alkanoic acid hydrogen isotopes from Lake Bolshoye Shchuchye. Major last deglaciation climate changes in the North Atlantic are present in this record, including transitions associated with the Bølling–Allerød, Younger Dryas and Holocene. However, the magnitude of the last deglaciation isotopic shifts at Bolshoye Shchuchye are small relative to the North Atlantic, and are dwarfed by a shift to2H‐enriched values starting at 10.5k cal abpat this site that is not present in most other records. The last deglaciation changes may be due to variations in local temperature, sea ice cover in the Barents and Kara seas, and plant community shifts impacting transpiration. The enrichment starting at 10.5‐k cal abpprobably records a shift towards modern climate conditions, caused by the loss of the Scandinavian Ice Sheet, increased locally sourced moisture from the Barents and Kara seas, and northward treeline migration causing enhanced transpiration. Future warming may increase summer precipitation in this region, with changes to local ecosystems and carbon cycling. 
    more » « less
  5. Abstract Tropical South American climate is influenced by the South American Summer Monsoon and the El Niño Southern Oscillation. However, assessing natural hydroclimate variability in the region is hindered by the scarcity of long-term instrumental records. Here we present a tree-ringδ18O-based precipitation reconstruction for the South American Altiplano for 1700–2013 C.E., derived fromPolylepis tarapacanatree rings. This record explains 56% of December–March instrumental precipitation variability in the Altiplano. The tree-ringδ18O chronology shows interannual (2–5 years) and decadal (~11 years) oscillations that are remarkably consistent with periodicities observed in Altiplano precipitation, central tropical Pacific sea surface temperatures, southern-tropical Andean ice coreδ18O and tropical Pacific coralδ18O archives. These results demonstrate the value of annual-resolution tree-ringδ18O records to capture hydroclimate teleconnections and generate robust tropical climate reconstructions. This work contributes to a better understanding of global oxygen-isotope patterns, as well as atmospheric and oceanic processes across the tropics. 
    more » « less