Abstract Hydroclimate variability in tropical South America is strongly regulated by the South American Summer Monsoon (SASM). However, past precipitation changes are poorly constrained due to limited observations and high‐resolution paleoproxies. We found that summer precipitation and the El Niño‐Southern Oscillation (ENSO) variability are well registered in tree‐ring stable oxygen isotopes (δ18OTR) ofPolylepis tarapacanain the Chilean and Bolivian Altiplano in the Central Andes (18–22°S, ∼4,500 m a.s.l.) with the northern forests having the strongest climate signal. More enrichedδ18OTRvalues were found at the southern sites likely due to the increasing aridity toward the southwest of the Altiplano. The climate signal ofP. tarapacana δ18OTRis the combined result of moisture transported from the Amazon Basin, modulated by the SASM, ENSO, and local evaporation, and emerges as a novel tree‐ring climate proxy for the southern tropical Andes.
more »
« less
This content will become publicly available on December 1, 2025
A 300-year tree-ring δ18O-based precipitation reconstruction for the South American Altiplano highlights decadal hydroclimate teleconnections
Abstract Tropical South American climate is influenced by the South American Summer Monsoon and the El Niño Southern Oscillation. However, assessing natural hydroclimate variability in the region is hindered by the scarcity of long-term instrumental records. Here we present a tree-ringδ18O-based precipitation reconstruction for the South American Altiplano for 1700–2013 C.E., derived fromPolylepis tarapacanatree rings. This record explains 56% of December–March instrumental precipitation variability in the Altiplano. The tree-ringδ18O chronology shows interannual (2–5 years) and decadal (~11 years) oscillations that are remarkably consistent with periodicities observed in Altiplano precipitation, central tropical Pacific sea surface temperatures, southern-tropical Andean ice coreδ18O and tropical Pacific coralδ18O archives. These results demonstrate the value of annual-resolution tree-ringδ18O records to capture hydroclimate teleconnections and generate robust tropical climate reconstructions. This work contributes to a better understanding of global oxygen-isotope patterns, as well as atmospheric and oceanic processes across the tropics.
more »
« less
- PAR ID:
- 10512350
- Publisher / Repository:
- Nature Communications Earth & Environment
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The South American summer monsoon (SASM) profoundly influences tropical South America’s climate, yet understanding its low-frequency variability has been challenging. Climate models and oxygen isotope data have been used to examine the SASM variability over the last millennium (LM) but have, at times, provided conflicting findings, especially regarding its mean-state change from the Medieval Climate Anomaly to the Little Ice Age. Here, we use a paleoclimate data assimilation (DA) method, combining model results and δ18O observations, to produce a δ18O-enabled, dynamically coherent, and spatiotemporally complete austral summer hydroclimate reconstruction over the LM for tropical South America at 5-year resolution. This reconstruction aligns with independent hydroclimate and δ18O records withheld from the DA, revealing a centennial-scale SASM intensification during the MCA-LIA transition period, associated with the southward shift of the Atlantic Intertropical Convergence Zone and the strengthening Pacific Walker circulation (PWC). This highlights the necessity of accurately representing the PWC in climate models to predict future SASM changes.more » « less
-
Abstract The tropical Pacific influences climate patterns across the globe, yet robust constraints on decadal to centennial‐scale climate variations are difficult to extract from sparse instrumental observations in this region. Oxygen isotope (δ18O) records from long‐lived corals enable the quantitative reconstruction of tropical Pacific climate variability and trends over the twentieth century and beyond, but such corals are exceedingly rare. Here, we use multiple short coral δ18O records to create a coral ‘ensemble’ reconstruction of twentieth century climate in the central tropical Pacific. Ten U/Th‐dated fossil coral δ18O records from Kiritimati Island (2°N, 157°W) span 1891 CE to 2006 CE, with the younger samples enabling quantitative comparison to a large ensemble of modern coral records and instrumental sea surface temperature. A composite record constructed of modern and fossil Kiritimati coral δ18O records shows a shift toward warmer and fresher conditions from 1970 CE onward, consistent with previously published records in this region.more » « less
-
Abstract Oxygen isotope speleothems have been widely used to infer past climate changes over tropical South America (TSA). However, the spatial patterns of the millennial precipitation and precipitationδ18O (δ18Op) response have remained controversial, and their response mechanisms are unclear. In particular, it is not clear whether the regional precipitation represents the intensity of the millennial South American summer monsoon (SASM). Here, we study the TSA hydroclimate variability during the last deglaciation (20–11 ka ago) by combining transient simulations of an isotope-enabled Community Earth System Model (iCESM) and the speleothem records over the lowland TSA. Our model reasonably simulates the deglacial evolution of hydroclimate variables and water isotopes over the TSA, albeit underestimating the amplitude of variability. North Atlantic meltwater discharge is the leading factor driving the TSA’s millennial hydroclimate variability. The spatial pattern of both precipitation andδ18Opshow a northwest–southeast dipole associated with the meridional migration of the intertropical convergence zone, instead of a continental-wide coherent change as inferred in many previous works on speleothem records. The dipole response is supported by multisource paleoclimate proxies. In response to increased meltwater forcing, the SASM weakened (characterized by a decreased low-level easterly wind) and consequently reduced rainfall in the western Amazon and increased rainfall in eastern Brazil. A similar dipole response is also generated by insolation, ice sheets, and greenhouse gases, suggesting an inherent stability of the spatial characteristics of the SASM regardless of the external forcing and time scales. Finally, we discuss the potential reasons for the model–proxy discrepancy and pose the necessity to build more paleoclimate proxy data in central-western Amazon. Significance StatementWe want to reconcile the controversy on whether there is a coherent or heterogeneous response in millennial hydroclimate over tropical South America and to clearly understand the forcing mechanisms behind it. Our isotope-enabled transient simulations fill the gap in speleothem reconstructions to capture a complete picture of millennial precipitation/δ18Opand monsoon intensity change. We highlight a heterogeneous dipole response in precipitation andδ18Opon millennial and orbital time scales. Increased meltwater discharge shifts ITCZ southward and favors a wet condition in coastal Brazil. Meanwhile, the low-level easterly and the summer monsoon intensity reduced, causing a dry condition in the central-western Amazon. However, the millennial variability of hydroclimate response is underestimated in our model, together with the lack of direct paleoclimate proxies in the central-west Amazon, complicating the interpretation of changes in specific paleoclimate events and posing a challenge to constraining the spatial range of the dipole. Therefore, we emphasize the necessity to increase the source of proxies, enhance proxy interpretations, and improve climate model performance in the future.more » « less
-
Abstract. Given the short span of instrumental precipitationrecords in the South American Altiplano, longer-term hydroclimatic recordsare needed to understand the nature of climate variability and to improvethe predictability of precipitation, a key natural resource for thesocioeconomic development in the Altiplano and adjacent arid lowlands. Inthis region grows Polylepis tarapacana, a long-lived tree species that is very sensitive tohydroclimatic changes and has been widely used for tree-ring studies in thecentral and southern Altiplano. However, in the northern sector of thePeruvian and Chilean Altiplano (16–19∘ S)still exists a gap of high-resolution hydroclimatic data based on tree-ringrecords. Our study provides an overview of the temporal evolution of thelate-spring–mid-summer precipitation for the period 1625–2013 CE at thenorthern South American Altiplano, allowing for the identification of wet ordry periods based on a regional reconstruction from three P. tarapacana chronologies. Anincrease in the occurrence of extreme dry events, together with a decreasingtrend in the reconstructed precipitation, has been recorded since the 1970sin the northern Altiplano within the context of the last ∼4 centuries. The average precipitation over the last 17 years stands outas the driest in our 389-year reconstruction. We reveal a temporal andspatial synchrony across the Altiplano region of dry conditions since themid-1970s. Independent tree-ring-based hydroclimate reconstructions andseveral paleoclimatic records based on other proxies available for thetropical Andes record this synchrony. The influence of El Niño–SouthernOscillation (ENSO) on the northern Altiplano precipitation was detected byour rainfall reconstruction that showed past drier conditions in our studyregion associated with ENSO warm events. The spectral properties of therainfall reconstruction showed strong imprints of ENSO variability atdecadal, sub-decadal, and inter-annual timescales, in particular from thePacific NIÑO 3 sector. Overall, the recent reduction in precipitation incomparison with previous centuries, the increase in extreme dry events andthe coupling between precipitation and ENSO variability reported by thiswork is essential information in the context of the growing demand for waterresources in the Altiplano. This study will contribute to a betterunderstanding of the vulnerability and resilience of the region to theprojected evapotranspiration increase for the 21st century associated withglobal warming.more » « less