skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A numerical study on the multi-cycle self-burrowing of a dual-anchor probe in shallow coarse-grained soils of varying density
Abstract Development of self-burrowing probes that can penetrate soils without the aid of external reaction force from drill rigs and trucks would facilitate site characterization activities and deployment of sensors underneath existing structures and in locations with limited access (e.g., toe of dams, extraterrestrial bodies). Successful deployment of self-burrowing probes in the field will require several cycles of expansion, penetration, and contraction motions due to the geometric constraints and the increase in soil strength with depth. This study explores the multi-cycle performance of a dual-anchor self-burrowing probe in granular assemblies of varying density using discrete element modeling simulations. The simulated probe consists of an expandable top shaft, expandable bottom shaft, and a conical tip. The expansion of the shafts are force-controlled, the shaft contraction and tip advancement are displacement-controlled, and the horizontal tip oscillation is employed to reduce the penetration resistance. The performance of the self-burrowing probe in terms of self-burrowing distance is greater in the medium dense specimen than in the dense and loose specimens due to the high magnitude of anchorage force in comparison with penetration resistance. For all three soil densities, most of the mechanical work is done by tip oscillation; however, this accounts for a greater percentage of the total work in the denser specimen. Additionally, while tip oscillation aids in enabling self-burrowing to greater depths, it also produces a greater work demand. The results presented here can help evaluate the effects of soil density on probe prototypes and estimate the work requited for self-burrowing.  more » « less
Award ID(s):
1942369
PAR ID:
10469864
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Acta Geotechnica
Volume:
19
Issue:
3
ISSN:
1861-1125
Format(s):
Medium: X Size: p. 1231-1250
Size(s):
p. 1231-1250
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soil penetration is an energy-intensive process that is common in both nature and civil infrastructure applications. Many human construction activities involve soil penetration that is typically accomplished through impact-driving, pushing against a reaction mass, excavating, or vibrating using large equipment. This paper presents a numerical investigation into the self-penetration process of a probe that uses an ‘anchor–tip’ burrowing strategy with the goal of extending the mechanics-based understanding of burrower–soil interactions at the physical dimensions and stress levels relevant for civil infrastructure applications. Self-penetration is defined here as the ability of a probe to generate enough anchorage forces to overcome the soil penetration resistance and advance the probe tip to greater depths. 3D Discrete element modeling simulations are employed to understand the self-penetration process of an idealized probe in noncohesive soil along with the interactions between the probe’s anchor and tip. The results indicate that self-penetration conditions improve with simulated soil depth, and favorable probe configurations for self-penetration include shorter anchor–tip distances, anchors with greater length and expansion magnitudes, and anchors with a greater friction coefficient. The results shed light on the scaling of burrowing forces across a range of soil depths relevant to civil infrastructure applications and provide design guidance for future self-penetrating probes. 
    more » « less
  2. Soil penetration is a ubiquitous energy-intensive process in geotechnical engineering that is typically accomplished by quasi-static pushing, impact driving, or excavating. In contrast, organisms such as marine and earthworms, razor clams, and plants have developed efficient penetration strategies. Using motion sequences inspired by these organisms, a probe that uses a self-contained anchor to generate the reaction force required to advance its tip to greater depths has been conceptualized. This study explores the interactions between this probe and coarse-grained soil using 3D discrete element modeling. Spatial distributions of soil effective stresses indicate that expansion of the anchor produces arching and rotation of principal effective stresses that facilitate penetration by inducing stress relaxation around the probe’s tip and stress increase around the anchor. Spatial strain maps highlight the volumetric deformations around the probe, while measurements of both stresses and strains show that the state of the soil around the anchor and tip evolves toward the critical state line. During subsequent tip advancement, the stresses and strains are similar to those during initial insertion, leading to the remobilization of the tip resistance. Longer anchor and shorter anchor-to-tip distance better facilitate tip advancement by producing greater stress relaxation ahead of the tip. 
    more » « less
  3. Site characterization activities, such as Cone Penetration Testing (CPT), Pressuremeter Testing (PMT), and Dilatometer Testing (DMT), can be compromised due to challenges associated with equipment mobilization. This situation is common at locations such as the toe of dams, dense urban environments, deep water, and extraterrestrial bodies. This research uses bio-inspiration to develop a probe that can penetrate itself into the subsurface, eliminating the need for a drill rig to provide the reaction mass. This probe uses an adaptation employed by razor clams, worms, and caecilians where a body section is radially expanded to form an anchor which generates the reaction force needed to penetrate the soil. This paper presents a Discrete Element Modeling (DEM) study of the self-penetration process of this probe. Analysis of soil stress states indicates that the probe configuration influences its self-penetration ability. Specifically, the distance between the anchor and the tip affects the interaction between these probe parts due to principal stress rotation and arching. The results indicate that self-penetration is achievable in medium-dense coarse-grained soil by bio-inspired probes with smaller anchor-tip spacings and provide useful information for the design of future probe prototypes. 
    more » « less
  4. Plant root growth is often accompanied by circumnutative motion consisting of downward helical movement of the root tip. Previous studies indicate that circumnutations allow roots to avoid obstacles that would impede root growth, while other studies show that circumnutations can reduce the penetration resistance mobilised during root growth. Discrete-element modelling (DEM) simulations were performed on probes that employ circumnutation-inspired motion (CIM) to penetrate granular assemblies at shallow depths to evaluate the reduction in penetration resistance. These simulations investigate the effect of the ratio of tangential to vertical velocity of the circumnutative motion (i.e. relative velocity) and of the probe geometry (i.e. tip tilt angle and length). The results indicate that CIM penetration reduces the penetration force and work relative to non-rotational penetration (NRP) by changing the soil fabric and diffusing the force chains around the probe tip. However, the circumnutative motion leads to an increase in torque and associated rotational work. An optimal relative velocity and probe geometry exist for the simulated CIM probes, resulting in a smaller total work than that required for NRP. CIM penetration also mobilises smaller penetration forces and work than rotational penetration (i.e. with a straight tip), particularly at smaller relative velocities. The reduction in penetration forces induced by CIM could facilitate site investigation and monitoring activities. 
    more » « less
  5. Equipment used for site investigation activities like drill rigs are typically large and heavy to provide sufficient reaction mass to overcome the soil’s penetration resistance. The need for large and heavy equipment creates challenges for performing site investigations at sites with limited accessibility, such as urban centres, vegetated areas, locations with height restrictions and surficial soft soils, and steep slopes. Also, mobilization of large equipment to the project site is responsible for a significant portion of the carbon footprint of site investigations. Successful development of self-burrowing technology can have enormous implications for geotechnical site investigation, ranging from performance of in-situ tests to installation of instrumentation without the need of heavy equipment. During the last decade there has been an acceleration of research in the field of bio-inspired geotechnics, whose premise is that certain animals and plants have developed efficient strategies to interact with geomaterials in ways that are analogous to those in geotechnical engineering. This paper provides a synthesis of advances in bio-inspired site investigation related to the (i) reduction of penetration resistance by means of modifying the tip shape, expanding a shaft section near the probe tip, applying motions to the tip like rotation and oscillation, and injecting fluids and (ii) generation of reaction forces with temporary anchors that enable self-burrowing. Examples of prototypes that have been tested experimentally are highlighted. However, there are important research gaps associated with testing in a broader range of conditions, interpretation of results, and development of hardware that need to be addressed to develop field-ready equipment that can provide useful data for geotechnical design. 
    more » « less