skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Collaborative Augmented Reality in Higher Education Settings – Strategies, Learning Outcomes and Challenges
Augmented reality (AR) has the potential to enhance the learning experience of students by providing collaborative, interactive, and immersive environments. This paper reports a systematic literature review focused on examining the research studies on the use of AR in higher education from January 2018 to October 2022, specifically in the context of collaborative learning. The initial search resulted in a total of 2537 studies, of which 20 were analyzed for final review. The main findings suggest that learning using AR-enabled collaborative learning benefits students’ overall knowledge gain, improves task performance, reduces task errors, and provides a positive collaboration experience in higher education settings. This article concludes by discussing the implications of these findings and their use as guidelines by educators, designers, and researchers for developing effective collaborative AR learning content.  more » « less
Award ID(s):
2033801
PAR ID:
10469871
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
67
Issue:
1
ISSN:
1071-1813
Format(s):
Medium: X Size: p. 1090-1096
Size(s):
p. 1090-1096
Sponsoring Org:
National Science Foundation
More Like this
  1. Augmented Reality (AR) applications can enable geographically distant users to collaborate using shared video feeds or interactive 3D holograms, and may be particularly useful in the socially distant context of the Covid-19 pandemic. However, a good user experience is key for their success and could be negatively impacted by network impairments, which are an inevitable occurrence in today's best-effort Internet. In this paper, we present the findings of an empirical user study, aimed at understanding the effects of network outages, on user experience and behavior, in a collaborative AR task. We highlight how network outages affected users in different ways depending on their role in the collaborative task, and how giving users explicit information about poor network conditions helped them deal with some of these negative effects. Furthermore, we report the strategies that users themselves adopted, to deal with outages, such as batching instructions, or shifting to a different spatial referencing style when communicating with their partners. Lastly, based on our findings, we present some design implications for future remote-collaborative AR applications. 
    more » « less
  2. Anatomy education is an indispensable part of medical training, but traditional methods face challenges like limited resources for dissection in large classes and difficulties understanding 2D anatomy in textbooks. Advanced technologies, such as 3D visualization and augmented reality (AR), are transforming anatomy learning. This paper presents two in-house solutions that use handheld tablets or screen-based AR to visualize 3D anatomy models with informative labels and in-situ visualizations of the muscle anatomy. To assess these tools, a user study of muscle anatomy education involved 236 premedical students in dyadic teams, with results showing that the tablet-based 3D visualization and screen-based AR tools led to significantly higher learning experience scores than traditional textbook. While knowledge retention didn’t differ significantly, ethnographic and gender analysis showed that male students generally reported more positive learning experiences than female students. This study discusses the implications for anatomy and medical education, highlighting the potential of these innovative learning tools considering gender and team dynamics in body painting anatomy learning interventions. 
    more » « less
  3. Introduction: The emergence and widespread adoption of generative AI (GenAI) chatbots such as ChatGPT, and programming assistants such as GitHub Copilot, have radically redefined the landscape of programming education. This calls for replication of studies and reexamination of findings from pre-GenAI CS contexts to understand the impact on students. Objectives: Achievement Goals are well studied in computing education and can be predictive of student interest and exam performance. The objective in this study is to compare findings from prior achievement goal studies in CS1 courses with new CS1 courses that emphasize the use of human-GenAI collaborative coding. Methods: In a CS1 course that integrates GenAI, we use linear regression to explore the relationship between achievement goals and prior experience on student interest, exam performance, and perceptions of GenAI. Results: As with prior findings in traditional CS1 classes, Mastery goals are correlated with interest in computing. Contradicting prior CS1 findings, normative goals are correlated with exam scores. Normative and mastery goals correlate with students’ perceptions of learning with GenAI. Mastery goals weakly correlate with reading and testing code output from GenAI. 
    more » « less
  4. The integration of Augmented Reality (AR) into Human–Robot Interaction (HRI) represents a significant advancement in collaborative technologies. This paper provides a comprehensive review of AR applications within HRI with a focus on manufacturing, emphasizing their role in enhancing collaboration, trust, and safety. By aggregating findings from numerous studies, this research highlights key challenges, including the need for improved Situational Awareness, enhanced safety, and more effective communication between humans and robots. A framework developed from the literature is presented, detailing the critical elements of AR necessary for advancing HRI. The framework outlines effective methods for continuously evaluating AR systems for HRI. The framework is supported with the help of two case studies and another ongoing research endeavor presented in this paper. This structured approach focuses on enhancing collaboration and safety, with a strong emphasis on integrating best practices from Human–Computer Interaction (HCI) centered around user experience and design. 
    more » « less
  5. To pursue transdisciplinary education, bringing together different disciplinary perspectives is necessary. As two graduate researchers, in engineering technology and anthropology, on a National Science Foundation (NSF) Improving Undergraduate STEM Education research project, we want to embody and explore our role in the journey to pursue transdisciplinary education. Our familiarity with higher education as students, our different disciplinary backgrounds and lived experiences, and our training as an engineering technology educator and a social scientist contribute greatly to the advancement of understanding the project. Harnessing our combined expertise enables us to see collaborative co-teaching, group learning, and student engagement in new ways. Often transdisciplinary education research is approached from siloed disciplines or from a single perspective and not inclusive of graduate students' perspectives. We find ourselves working on a collaborative cross-college project between three different colleges, Business, Engineering Technology, and Liberal Arts, where faculty and students are co-teaching and co-learning in a series of design and innovation courses. A key element of this project is gathering and using stakeholder data from students, faculty, and administrators. Midway through our three-year project, the NSF project’s external reviewer highlighted the crucial value added of having graduate researchers looking at transforming higher education towards transdisciplinarity. With that in mind, we offer some guiding thoughts about collaborative research among graduate students and faculty from different academic disciplines. This includes tips on how we collaborated in coding, analysis, and data presentations. Using project examples, we will discuss how we used tools for collaboration such as NVivo Teams and Microsoft Teams; these platforms aided in contributing to the iterative research design of this project and research outputs. Our process was strengthened by active participation in project meetings with faculty, educational community events, and data review sessions to reach data consensus. We have noticed how transdisciplinarity can transform undergraduate learning and encourage cross-college faculty collaboration. We will reflect on the significance of collaboration at all levels of higher education. Furthermore, this experience has set us on the path to becoming transdisciplinary scholars ourselves. 
    more » « less