skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effects of Network Outages on User Experience in Augmented Reality Based Remote Collaboration - An Empirical Study
Augmented Reality (AR) applications can enable geographically distant users to collaborate using shared video feeds or interactive 3D holograms, and may be particularly useful in the socially distant context of the Covid-19 pandemic. However, a good user experience is key for their success and could be negatively impacted by network impairments, which are an inevitable occurrence in today's best-effort Internet. In this paper, we present the findings of an empirical user study, aimed at understanding the effects of network outages, on user experience and behavior, in a collaborative AR task. We highlight how network outages affected users in different ways depending on their role in the collaborative task, and how giving users explicit information about poor network conditions helped them deal with some of these negative effects. Furthermore, we report the strategies that users themselves adopted, to deal with outages, such as batching instructions, or shifting to a different spatial referencing style when communicating with their partners. Lastly, based on our findings, we present some design implications for future remote-collaborative AR applications.  more » « less
Award ID(s):
1815046
PAR ID:
10603257
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
5
Issue:
CSCW2
ISSN:
2573-0142
Format(s):
Medium: X Size: p. 1-27
Size(s):
p. 1-27
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile Augmented Reality (AR), which overlays digital information with real-world scenes surrounding a user, provides an enhanced mode of interaction with the ambient world. Contextual AR applications rely on image recognition to identify objects in the view of the mobile device. In practice, due to image distortions and device resource constraints, achieving high performance image recognition for AR is challenging. Recent advances in edge computing offer opportunities for designing collaborative image recognition frameworks for AR. In this demonstration, we present CollabAR, an edge-assisted collaborative image recognition framework. CollabAR allows AR devices that are facing the same scene to collaborate on the recognition task. Demo participants develop an intuition for different image distortions and their impact on image recognition accuracy. We showcase how heterogeneous images taken by different users can be aggregated to improve recognition accuracy and provide a better user experience in AR. 
    more » « less
  2. Many have predicted the future of the Web to be the integration of Web content with the real-world through technologies such as Augmented Reality (AR). This has led to the rise of Extended Reality (XR) Web Browsers used to shorten the long AR application development and deployment cycle of native applications especially across different platforms. As XR Browsers mature, we face new challenges related to collaborative and multi-user applications that span users, devices, and machines. These collaborative XR applications require: (1) networking support for scaling to many users, (2) mechanisms for content access control and application isolation, and (3) the ability to host application logic near clients or data sources to reduce application latency. In this paper, we present the design and evaluation of the AR Edge Networking Architecture (ARENA) which is a platform that simplifies building and hosting collaborative XR applications on WebXR capable browsers. ARENA provides a number of critical components including: a hierarchical geospatial directory service that connects users to nearby servers and content, a token-based authentication system for controlling user access to content, and an application/service runtime supervisor that can dispatch programs across any network connected device. All of the content within ARENA exists as endpoints in a PubSub scene graph model that is synchronized across all users. We evaluate ARENA in terms of client performance as well as benchmark end-to-end response-time as load on the system scales. We show the ability to horizontally scale the system to Internet-scale with scenes containing hundreds of users and latencies on the order of tens of milliseconds. Finally, we highlight projects built using ARENA and showcase how our approach dramatically simplifies collaborative multi-user XR development compared to monolithic approaches. 
    more » « less
  3. Virtual reality (VR) simulations have been adopted to provide controllable environments for running augmented reality (AR) experiments in diverse scenarios. However, insufficient research has explored the impact of AR applications on users, especially their attention patterns, and whether VR simulations accurately replicate these effects. In this work, we propose to analyze user attention patterns via eye tracking during XR usage. To represent applications that provide both helpful guidance and irrelevant information, we built a Sudoku Helper app that includes visual hints and potential distractions during the puzzle-solving period. We conducted two user studies with 19 different users each in AR and VR, in which we collected eye tracking data, conducted gaze-based analysis, and trained machine learning (ML) models to predict user attentional states and attention control ability. Our results show that the AR app had a statistically significant impact on enhancing attention by increasing the fixated proportion of time, while the VR app reduced fixated time and made the users less focused. Results indicate that there is a discrepancy between VR simulations and the AR experience. Our ML models achieve 99.3% and 96.3% accuracy in predicting user attention control ability in AR and VR, respectively. A noticeable performance drop when transferring models trained on one medium to the other further highlights the gap between the AR experience and the VR simulation of it. 
    more » « less
  4. Augmented reality (AR) has the potential to enhance the learning experience of students by providing collaborative, interactive, and immersive environments. This paper reports a systematic literature review focused on examining the research studies on the use of AR in higher education from January 2018 to October 2022, specifically in the context of collaborative learning. The initial search resulted in a total of 2537 studies, of which 20 were analyzed for final review. The main findings suggest that learning using AR-enabled collaborative learning benefits students’ overall knowledge gain, improves task performance, reduces task errors, and provides a positive collaboration experience in higher education settings. This article concludes by discussing the implications of these findings and their use as guidelines by educators, designers, and researchers for developing effective collaborative AR learning content. 
    more » « less
  5. Current collaborative augmented reality (AR) systems establish a common localization coordinate frame among users by exchanging and comparing maps comprised of feature points. However, relative positioning through map sharing struggles in dynamic or feature-sparse environments. It also requires that users exchange identical regions of the map, which may not be possible if they are separated by walls or facing different directions. In this paper, we present Cappella11Like its musical inspiration, Cappella utilizes collaboration among agents to forgo the need for instrumentation, an infrastructure-free 6-degrees-of-freedom (6DOF) positioning system for multi-user AR applications that uses motion estimates and range measurements between users to establish an accurate relative coordinate system. Cappella uses visual-inertial odometry (VIO) in conjunction with ultra-wideband (UWB) ranging radios to estimate the relative position of each device in an ad hoc manner. The system leverages a collaborative particle filtering formulation that operates on sporadic messages exchanged between nearby users. Unlike visual landmark sharing approaches, this allows for collaborative AR sessions even if users do not share the same field of view, or if the environment is too dynamic for feature matching to be reliable. We show that not only is it possible to perform collaborative positioning without infrastructure or global coordinates, but that our approach provides nearly the same level of accuracy as fixed infrastructure approaches for AR teaming applications. Cappella consists of an open source UWB firmware and reference mobile phone application that can display the location of team members in real time using mobile AR. We evaluate Cappella across mul-tiple buildings under a wide variety of conditions, including a contiguous 30,000 square foot region spanning multiple floors, and find that it achieves median geometric error in 3D of less than 1 meter. 
    more » « less