ABSTRACT Intervening metal absorbers in quasar spectra at z > 6 can be used as probes to study the chemical enrichment of the Universe during the Epoch of Reionization. This work presents the comoving line densities (dn/dX) of low-ionization absorbers, namely, Mg ii (2796 Å), C ii (1334 Å), and O  i (1302 Å) across 2 < z < 6 using the E-XQR-30 metal absorber catalogue prepared from 42 XSHOOTER quasar spectra at 5.8 < z < 6.6. Here, we analyse 280 Mg ii (1.9 < z < 6.4), 22 C ii (5.2 < z < 6.4), and 10 O i (5.3 < z < 6.4) intervening absorbers, thereby building up on previous studies with improved sensitivity of 50 per cent completeness at an equivalent width of W > 0.03 Å. For the first time, we present the comoving line densities of 131 weak (W < 0.3 Å) intervening Mg ii absorbers at 1.9 < z < 6.4 which exhibit constant evolution with redshift similar to medium (0.3 < W < 1.0 Å) absorbers. However, the cosmic mass density of Mg ii – dominated by strong Mg ii systems – traces the evolution of global star formation history from redshift 1.9 to 5.5. E-XQR-30 also increases the absorption path-length by a factor of 50 per cent for C ii and O i whose line densities show a rising trend towards z > 5, in agreement with previous works. In the context of a decline in the metal enrichment of the Universe at z > 5, the overall evolution in the incidence rates of absorption systems can be explained by a weak – possibly soft fluctuating – ultraviolet background. Our results, thereby, provide evidence for a late reionization continuing to occur in metal-enriched and therefore, biased regions in the Universe. 
                        more » 
                        « less   
                    
                            
                            Machine learning uncovers the universe’s hidden gems: A comprehensive catalogue of C  iv absorption lines in SDSS DR12
                        
                    
    
            ABSTRACT We assemble the largest C iv absorption line catalogue to date, leveraging machine learning, specifically Gaussian processes, to remove the need for visual inspection for detecting C iv absorbers. The catalogue contains probabilities classifying the reliability of the absorption system within a quasar spectrum. Our training set was a sub-sample of DR7 spectra that had no detectable C iv absorption in a large visually inspected catalogue. We used Bayesian model selection to decide between our continuum model and our absorption-line models. Using a random hold-out sample of 1301 spectra from all of the 26 030 investigated spectra in DR7 C iv catalogue, we validated our pipeline and obtained an 87 per cent classification performance score. We found good purity and completeness values, both $$\sim 80{{\ \rm per\ cent}}$$, when a probability of $$\sim 95{{\ \rm per\ cent}}$$ is used as the threshold. Our pipeline obtained similar C iv redshifts and rest equivalent widths to our training set. Applying our algorithm to 185 425 selected quasar spectra from SDSS DR12, we produce a catalogue of 113 775 C iv doublets with at least 95 per cent confidence. Our catalogue provides maximum a posteriori values and credible intervals for C iv redshift, column density, and Doppler velocity dispersion. We detect C iv absorption systems with a redshift range of 1.37–5.1, including 33 systems with a redshift larger than 5 and 549 absorbers systems with a rest equivalent width greater than 2 Å at more than 95 per cent confidence. Our catalogue can be used to investigate the physical properties of the circumgalactic and intergalactic media. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2215705
- PAR ID:
- 10469899
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 526
- Issue:
- 3
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 4557-4574
- Size(s):
- p. 4557-4574
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Intervening metal absorption lines in the spectra of z ≳ 6 quasars are fundamental probes of the ionization state and chemical composition of circumgalactic and intergalactic gas near the end of the reionization epoch. Large absorber samples are required to robustly measure typical absorber properties and to refine models of the synthesis, transport, and ionization of metals in the early Universe. The Ultimate XSHOOTER legacy survey of quasars at z ∼ 5.8–6.6 (XQR-30) has obtained high signal-to-noise spectra of 30 luminous quasars, nearly quadrupling the existing sample of 12 high quality z ∼ 6 quasar spectra. We use this unprecedented sample to construct a catalogue of 778 systems showing absorption in one or more of Mg ii (360 systems), Fe ii (184), C ii (46), C iv (479), Si iv (127), and N v (13) which span 2 ≲ z ≲ 6.5. This catalogue significantly expands on existing samples of z ≳ 5 absorbers, especially for C iv and Si iv which are important probes of the ionizing photon background at high redshift. The sample is 50 per cent (90 per cent) complete for rest-frame equivalent widths W ≳ 0.03 Å (0.09 Å). We publicly release the absorber catalogue along with completeness statistics and a python script to compute the absorption search path for different ions and redshift ranges. This data set is a key legacy resource for studies of enriched gas from the era of galaxy assembly to cosmic noon, and paves the way for even higher redshift studies with JWST and 30 m-class telescopes.more » « less
- 
            ABSTRACT Extremely red quasars (ERQs) are an interesting sample of quasars in the Baryon Oscillation Spectroscopic Sample (BOSS) in the redshift range of 2.0–3.4 and have extreme red colours of i − W3 ≥ 4.6. Core ERQs have strong C iv emission lines with rest equivalent width of ≥100 Å. Many core ERQs also have C iv line profiles with peculiar boxy shapes which distinguish them from normal blue quasars. We show, using a combination of kernel density estimation and local outlier factor analyses on a space of the i − W3 colour, C iv rest equivalent width and line kurtosis, that core ERQs likely represent a separate population rather than a smooth transition between normal blue quasars and the quasars in the tail of the colour-REW distribution. We apply our analyses to find new criteria for selecting ERQs in this 3D parameter space. Our final selection produces 133 quasars, which are three times more likely to have a visually verified C iv broad absorption line feature than the previous core ERQ sample. We further show that our newly selected sample are extreme objects in the intersection of the WISE AGN catalogue with the MILLIQUAS quasar catalogue in the colour–colour space of (W1 − W2, W2 − W3). This paper validates an improved selection method for red quasars which can be applied to future data sets such as the quasar catalogue from the Dark Energy Spectroscopic Instrument.more » « less
- 
            ABSTRACT The elemental abundances in the broad-line regions of high-redshift quasars trace the chemical evolution in the nuclear regions of massive galaxies in the early Universe. In this work, we study metallicity-sensitive broad emission-line flux ratios in rest-frame UV spectra of 25 high-redshift (5.8 < z < 7.5) quasars observed with the VLT/X-shooter and Gemini/GNIRS instruments, ranging over $$\log \left({{M}_{\rm {BH}}/\rm {M}_{\odot }}\right) = 8.4-9.8$$ in black hole mass and $$\log \left(\rm {L}_{\rm {bol}}/\rm {erg \, s}^{-1}\right) = 46.7-47.7$$ in bolometric luminosity. We fit individual spectra and composites generated by binning across quasar properties: bolometric luminosity, black hole mass, and blueshift of the C iv line, finding no redshift evolution in the emission-line ratios by comparing our high-redshift quasars to lower redshift (2.0 < z < 5.0) results presented in the literature. Using cloudy-based locally optimally emitting cloud photoionization model relations between metallicity and emission-line flux ratios, we find the observable properties of the broad emission lines to be consistent with emission from gas clouds with metallicity that are at least 2–4 times solar. Our high-redshift measurements also confirm that the blueshift of the C iv emission line is correlated with its equivalent width, which influences line ratios normalized against C iv. When accounting for the C iv blueshift, we find that the rest-frame UV emission-line flux ratios do not correlate appreciably with the black hole mass or bolometric luminosity.more » « less
- 
            null (Ed.)ABSTRACT Outflows from supermassive black holes (SMBHs) play an important role in the co-evolution of themselves, their host galaxies, and the larger scale environments. Such outflows are often characterized by emission and absorption lines in various bands and in a wide velocity range blueshifted from the systematic redshift of the host quasar. In this paper, we report a strong broad line region (BLR) outflow from the z ≈ 4.7 quasar BR 1202-0725 based on the high-resolution optical spectrum taken with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph installed on the 6.5 m Magellan/Clay telescope, obtained from the ‘Probing the He ii re-Ionization ERa via Absorbing C iv Historical Yield’ (HIERACHY) project. This rest-frame ultraviolet (UV) spectrum is characterized by a few significantly blueshifted broad emission lines from high ions; the most significant one is the C iv line at a velocity of $$\sim -6500$$ km s−1 relative to the H α emission line, which is among the highest velocity BLR outflows in observed quasars at z > 4. The measured properties of UV emission lines from different ions, except for O i and Ly α, also follow a clear trend that higher ions tend to be broader and outflow at higher average velocities. There are multiple C iv and Si iv absorbing components identified on the blue wings of the corresponding emission lines, which may be produced by either the outflow or the intervening absorbers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
