Abstract We report the results of near-infrared spectroscopic observations of 37 quasars in the redshift range 6.3 < z ≤ 7.64, including 32 quasars at z > 6.5, forming the largest quasar near-infrared spectral sample at this redshift. The spectra, taken with Keck, Gemini, VLT, and Magellan, allow investigations of central black hole mass and quasar rest-frame ultraviolet spectral properties. The black hole masses derived from the Mg ii emission lines are in the range (0.3–3.6) × 10 9 M ⊙ , which requires massive seed black holes with masses ≳10 3 –10 4 M ⊙ , assuming Eddington accretion since z = 30. The Eddington ratio distribution peaks at λ Edd ∼ 0.8 and has a mean of 1.08, suggesting high accretion rates for these quasars. The C iv –Mg ii emission-line velocity differences in our sample show an increase of C iv blueshift toward higher redshift, but the evolutionary trend observed from this sample is weaker than the previous results from smaller samples at similar redshift. The Fe ii /Mg ii flux ratios derived for these quasars up to z = 7.6, compared with previous measurements at different redshifts, do not show any evidence of strong redshift evolution, suggesting metal-enriched environments in these quasars. Using this quasar sample, we create a quasar composite spectrum for z > 6.5 quasars and find no significant redshift evolution of quasar broad emission lines and continuum slope, except for a blueshift of the C iv line. Our sample yields a strong broad absorption line quasar fraction of ∼24%, higher than the fractions in lower-redshift quasar samples, although this could be affected by small sample statistics and selection effects.
more »
« less
Probing the He ii re-Ionization ERa via Absorbing C iv Historical Yield (HIERACHY) I: A strong outflow from a z ∼ 4.7 quasar
ABSTRACT Outflows from supermassive black holes (SMBHs) play an important role in the co-evolution of themselves, their host galaxies, and the larger scale environments. Such outflows are often characterized by emission and absorption lines in various bands and in a wide velocity range blueshifted from the systematic redshift of the host quasar. In this paper, we report a strong broad line region (BLR) outflow from the z ≈ 4.7 quasar BR 1202-0725 based on the high-resolution optical spectrum taken with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph installed on the 6.5 m Magellan/Clay telescope, obtained from the ‘Probing the He ii re-Ionization ERa via Absorbing C iv Historical Yield’ (HIERACHY) project. This rest-frame ultraviolet (UV) spectrum is characterized by a few significantly blueshifted broad emission lines from high ions; the most significant one is the C iv line at a velocity of $$\sim -6500$$ km s−1 relative to the H α emission line, which is among the highest velocity BLR outflows in observed quasars at z > 4. The measured properties of UV emission lines from different ions, except for O i and Ly α, also follow a clear trend that higher ions tend to be broader and outflow at higher average velocities. There are multiple C iv and Si iv absorbing components identified on the blue wings of the corresponding emission lines, which may be produced by either the outflow or the intervening absorbers.
more »
« less
- PAR ID:
- 10292586
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 505
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 4444 to 4455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The broad emission lines (BELs) emitted by active galactic nuclei respond to variations in the ionizing continuum emission from the accretion disk surrounding the central supermassive black hole (SMBH). This reverberation response provides insights into the structure and dynamics of the broad-line region (BLR). In 2024, we introduced a new forward-modeling tool, the Broad Emission Line Mapping Code (BELMAC), which simulates the velocity-resolved reverberation response of the BLR to an input light curve. In this work, we describe a new version of BELMAC, which uses photoionization models to calculate the cloud luminosities for selected BELs. We investigated the reverberation responses of Hα, Hβ, MgIIλ2800, and CIVλ1550 for models representing a disk-like BLR with Keplerian rotation, radiatively driven outflows, and inflows. The line responses generally provide a good indication of the respective luminosity-weighted radii. However, there are situations where the BLR exhibits a negative response to the driving continuum, causing overestimates of the luminosity-weighted radius. The virial mass derived from the models can differ dramatically from the actual SMBH mass, depending mainly on the disk inclination and velocity field. In single-zone models, the BELs exhibit similar responses and profile shapes; two-zone models, such as a Keplerian disk and a biconical outflow, can reproduce observed differences between high- and low-ionization lines. Radial flows produce asymmetric line profile shapes due to both anisotropic cloud emission and electron scattering in an intercloud medium. These competing attenuation effects complicate the interpretation of profile asymmetries.more » « less
-
Abstract We present the first results from the ongoing, intensive, multiwavelength monitoring program of the luminous Seyfert 1 galaxy Mrk 817. While this active galactic nucleus was, in part, selected for its historically unobscured nature, we discovered that the X-ray spectrum is highly absorbed, and there are new blueshifted, broad, and narrow UV absorption lines, which suggest that a dust-free, ionized obscurer located at the inner broad-line region partially covers the central source. Despite the obscuration, we measure UV and optical continuum reverberation lags consistent with a centrally illuminated Shakura–Sunyaev thin accretion disk, and measure reverberation lags associated with the optical broad-line region, as expected. However, in the first 55 days of the campaign, when the obscuration was becoming most extreme, we observe a de-coupling of the UV continuum and the UV broad emission-line variability. The correlation recovered in the next 42 days of the campaign, as Mrk 817 entered a less obscured state. The short C iv and Ly α lags suggest that the accretion disk extends beyond the UV broad-line region.more » « less
-
ABSTRACT The elemental abundances in the broad-line regions of high-redshift quasars trace the chemical evolution in the nuclear regions of massive galaxies in the early Universe. In this work, we study metallicity-sensitive broad emission-line flux ratios in rest-frame UV spectra of 25 high-redshift (5.8 < z < 7.5) quasars observed with the VLT/X-shooter and Gemini/GNIRS instruments, ranging over $$\log \left({{M}_{\rm {BH}}/\rm {M}_{\odot }}\right) = 8.4-9.8$$ in black hole mass and $$\log \left(\rm {L}_{\rm {bol}}/\rm {erg \, s}^{-1}\right) = 46.7-47.7$$ in bolometric luminosity. We fit individual spectra and composites generated by binning across quasar properties: bolometric luminosity, black hole mass, and blueshift of the C iv line, finding no redshift evolution in the emission-line ratios by comparing our high-redshift quasars to lower redshift (2.0 < z < 5.0) results presented in the literature. Using cloudy-based locally optimally emitting cloud photoionization model relations between metallicity and emission-line flux ratios, we find the observable properties of the broad emission lines to be consistent with emission from gas clouds with metallicity that are at least 2–4 times solar. Our high-redshift measurements also confirm that the blueshift of the C iv emission line is correlated with its equivalent width, which influences line ratios normalized against C iv. When accounting for the C iv blueshift, we find that the rest-frame UV emission-line flux ratios do not correlate appreciably with the black hole mass or bolometric luminosity.more » « less
-
null (Ed.)ABSTRACT The flux ratios of high-ionization lines are commonly assumed to indicate the metallicity of the broad emission-line region in luminous quasars. When accounting for the variation in their kinematic profiles, we show that the N v/C iv, (Si iv + O iv])/C iv, and N v/Ly α line ratios do not vary as a function of the quasar continuum luminosity, black hole mass, or accretion rate. Using photoionization models from cloudy, we further show that the observed changes in these line ratios can be explained by emission from gas with solar abundances, if the physical conditions of the emitting gas are allowed to vary over a broad range of densities and ionizing fluxes. The diversity of broad-line emission in quasar spectra can be explained by a model with emission from two kinematically distinct regions, where the line ratios suggest that these regions have either very different metallicity or density. Both simplicity and current galaxy evolution models suggest that near-solar abundances, with parts of the spectrum forming in high-density clouds, are more likely. Within this paradigm, objects with stronger outflow signatures show stronger emission from gas that is denser and located closer to the ionizing source, at radii consistent with simulations of line-driven disc-winds. Studies using broad-line ratios to infer chemical enrichment histories should consider changes in density and ionizing flux before estimating metallicities.more » « less
An official website of the United States government

