skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward Computer Vision-based Machine Intelligent Hybrid Memory Management
Current state-of-the-art systems for hybrid memory management are enriched with machine intelligence. To enable the practical use of Machine Learning (ML), system-level page schedulers focus the ML model training over a small subset of the applications’ memory footprint. At the same time, they use existing lightweight historical information to predict the access behavior of majority of the pages. To maximize application performance improvements, the pages selected for machine learning-based management are identified with elaborate page selection methods. These methods involve the calculation of detailed performance estimates depending on the configuration of the hybrid memory platform. This paper explores the opportunities to reduce such operational overheads of machine learning-based hybrid memory page schedulers via use of visualization techniques to depict memory access patterns, and reveal spatial and temporal correlations among the selected pages, that current methods fail to leverage. We propose an initial version of a visualization pipeline for prioritizing pages for machine learning, that is independent of the hybrid memory configuration. Our approach selects pages whose ML-based management delivers, on average, performance levels within 5% of current solutions, while reducing by 75 × the page selection time. We discuss future directions and make a case that visualization and computer vision methods can unlock new insights and reduce the operational complexity of emerging systems solutions.  more » « less
Award ID(s):
2016701
PAR ID:
10469911
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
ISBN:
9781450385701
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Location:
Washington DC DC USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Current state-of-the-art resource management systems leverage Machine Learning (ML) methods to enable the efficient use of heterogeneous memory hardware, deployed across emerging computing platforms. While machine intelligence can be effectively used to learn and predict complex data access patterns of modern analytics, the use of ML over the exploded data sizes and memory footprints is prohibitive for its practical system-level integration. For this reason, recent solutions use existing lightweight historical information to predict the access behavior of majority of the application pages, and train ML models over a small page subset. To maximize application performance improvements, the pages selected for machine learning-based management are identified with elaborate page selection methods. These methods involve the calculation of detailed performance estimates depending on the configuration of the hybrid memory platform. This paper aims to reduce such vast operational overheads, that further exacerbate the existing high overheads of using machine intelligence, in return for high performance and efficiency. To this end, we build Cronus, an image-based pipeline for selecting pages for ML-based management. We visualize memory access patterns and reveal spatial and temporal correlations among the selected pages, that current methods fail to leverage. We then use the created images to detect patterns and select page groups for machine learning model deployment. Cronus drastically reduces the operational costs, while preserving the effectiveness of the page selection and achieved performance of machine intelligent hybrid memory management. This work makes a case that visualization and computer vision methods can unlock new insights and reduce the operational complexity of emerging systems solutions. 
    more » « less
  2. Emerging workloads benefit from massive memory capacities provided by hybrid memory platforms. Recent system-level hybrid memory management solutions integrate machine learning methods to better predict complex data access behaviors. Given the substantial associated learning overheads, such solutions train parallel recurrent neural networks to learn the access patterns at the granularity of a page for a carefully selected page subset. Our observation reveals that the size of this subset varies immensely across workload classes, sizes and patterns. Increasing the granularity at the level of a page group will help reduce the aggregate learning overheads. Yet, unsupervised machine learning clustering methods are not practical to use in this context. Instead, this paper builds Coeus - a page grouping mechanism for machine learning-based hybrid memory management. Coeus is simple, robust and efficient. Coeus leverages data reuse insights to fine-tune the granularity at which patterns are interpreted by the system. As a result, Coeus creates large clusters of pages that share the same access behavior, in a practical way. Coeus reduces by almost 3x the associated learning overheads. In addition, Coeus achieves 3x higher application performance, by the combined effects of applying machine learning to more pages and by performing management operations at better granularity, compared to configurations of existing hybrid memory managers. 
    more » « less
  3. The increasing demand of big data analytics for more main memory capacity in datacenters and exascale computing environments is driving the integration of heterogeneous memory technologies. The new technologies exhibit vastly greater differences in access latencies, bandwidth and capacity compared to the traditional NUMA systems. Leveraging this heterogeneity while also delivering application performance enhancements requires intelligent data placement. We present Kleio, a page scheduler with machine intelligence for applications that execute across hybrid memory components. Kleio is a hybrid page scheduler that combines existing, lightweight, history-based data tiering methods for hybrid memory, with novel intelligent placement decisions based on deep neural networks. We contribute new understanding toward the scope of benefits that can be achieved by using intelligent page scheduling in comparison to existing history-based approaches, and towards the choice of the deep learning algorithms and their parameters that are effective for this problem space. Kleio incorporates a new method for prioritizing pages that leads to highest performance boost, while limiting the resulting system resource overheads. Our performance evaluation indicates that Kleio reduces on average 80% of the performance gap between the existing solutions and an oracle with knowledge of future access pattern. Kleio provides hybrid memory systems with fast and effective neural network training and prediction accuracy levels, which bring significant application performance improvements with limited resource overheads, so as to lay the grounds for its practical integration in future systems. 
    more » « less
  4. Locality-based migration strategies are widely used in existing memory space management. Such type of strategies are consistently confronts with challenges in efficiently managing pages migration within constrained memory space, especially when new architecture such as hybrid of DRAM and NVM are emerging. Here we propose TransMigrator, an innovative predictive page migration model based on transformer architecture, which obtains a qualitative leap in the breadth and accuracy of prediction compared with traditional local-based methods. TransMigrator utilizes an end-to-end neural network to learn memory access behavior and page migration record in the long-term history and predict the most likely next page to fetch. Furthermore, a migration-management mechanism is designed to support the page-feeding from predictor, which in another way enhance the model robustness. The model achieves an average prediction accuracy better than 0.72, and saves an average of 0.24 access time overhead compared to strategies such as AC-CLOCK, THMigrator, and VC-HMM. 
    more » « less
  5. For efficient placement of data in flat-address heterogeneous memory systems consisting of fast (e.g., 3D-DRAM) and slow memories (e.g., NVM), we present a hardware-based page migration technique. Unlike epoch-based approaches that migrate heavily accessed (“hot”) pages from slow to fast memories at each epoch interval, we migrate a page immediately when it becomes hot (“on-the-fly”), using hardware in user-transparent manner and with minimal OS intervention. The management of physical addresses due to page relocation becomes cumbersome and requires costly OS intervention. We use a small hardware remap table to keep track of new physical addresses of the migrated pages. This limits address reconciliation to occur only at periodic evictions of old remap entries. Also, we propose a hardware-orchestrated light-weight address reconciliation process. For our studied heterogeneous memory system, on-the-fly page migration with hardware-assisted address reconciliation provides 74% and 24% IPC improvements, on average for a set of SPEC CPU2006 workloads when compared to a baseline without any page migration and a system with on-the-fly page migration using OS-based address reconciliation, respectively. Furthermore, we present an analytical model for classifying applications as page migration friendly (applications that show performance gains from page migration) or unfriendly based on memory access behavior. 
    more » « less