skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Intelligent Page Migration on Heterogeneous Memory by Using Transformer
Locality-based migration strategies are widely used in existing memory space management. Such type of strategies are consistently confronts with challenges in efficiently managing pages migration within constrained memory space, especially when new architecture such as hybrid of DRAM and NVM are emerging. Here we propose TransMigrator, an innovative predictive page migration model based on transformer architecture, which obtains a qualitative leap in the breadth and accuracy of prediction compared with traditional local-based methods. TransMigrator utilizes an end-to-end neural network to learn memory access behavior and page migration record in the long-term history and predict the most likely next page to fetch. Furthermore, a migration-management mechanism is designed to support the page-feeding from predictor, which in another way enhance the model robustness. The model achieves an average prediction accuracy better than 0.72, and saves an average of 0.24 access time overhead compared to strategies such as AC-CLOCK, THMigrator, and VC-HMM.  more » « less
Award ID(s):
2026675
PAR ID:
10552884
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
International Journal of Parallel Programming
Volume:
52
Issue:
5-6
ISSN:
0885-7458
Page Range / eLocation ID:
380 to 399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For efficient placement of data in flat-address heterogeneous memory systems consisting of fast (e.g., 3D-DRAM) and slow memories (e.g., NVM), we present a hardware-based page migration technique. Unlike epoch-based approaches that migrate heavily accessed (“hot”) pages from slow to fast memories at each epoch interval, we migrate a page immediately when it becomes hot (“on-the-fly”), using hardware in user-transparent manner and with minimal OS intervention. The management of physical addresses due to page relocation becomes cumbersome and requires costly OS intervention. We use a small hardware remap table to keep track of new physical addresses of the migrated pages. This limits address reconciliation to occur only at periodic evictions of old remap entries. Also, we propose a hardware-orchestrated light-weight address reconciliation process. For our studied heterogeneous memory system, on-the-fly page migration with hardware-assisted address reconciliation provides 74% and 24% IPC improvements, on average for a set of SPEC CPU2006 workloads when compared to a baseline without any page migration and a system with on-the-fly page migration using OS-based address reconciliation, respectively. Furthermore, we present an analytical model for classifying applications as page migration friendly (applications that show performance gains from page migration) or unfriendly based on memory access behavior. 
    more » « less
  2. With the advent of byte-addressable memory devices, such as CXL memory, persistent memory, and storage-class memory, tiered memory systems have become a reality. Page migration is the de facto method within operating systems for managing tiered memory. It aims to bring hot data whenever possible into fast memory to optimize the performance of data accesses while using slow memory to accommodate data spilled from fast memory. While the existing research has demonstrated the effectiveness of various optimizations on page migration, it falls short of addressing a fundamental question: Is exclusive memory tiering, in which a page is either present in fast memory or slow memory, but not both simultaneously, the optimal strategy for tiered memory management? We demonstrate that page migration-based exclusive memory tiering suffers significant performance degradation when fast memory is under pressure. In this paper, we propose nonexclusive memory tiering, a page management strategy that retains a copy of pages recently promoted from slow memory to fast memory to mitigate memory thrashing. To enable non-exclusive memory tiering, we develop NOMAD, a new page management mechanism for Linux that features transactional page migration and page shadowing. NOMAD helps remove page migration off the critical path of program execution and makes migration completely asynchronous. Evaluations with carefully crafted micro-benchmarks and real-world applications show that NOMAD is able to achieve up to 6x performance improvement over the state-of-the-art transparent page placement (TPP) approach in Linux when under memory pressure. We also compare NOMAD with a recently proposed hardware-assisted, access sampling-based page migration approach and demonstrate NOMAD’s strengths and potential weaknesses in various scenarios. 
    more » « less
  3. With the advent of byte-addressable memory devices, such as CXLmemory, persistent memory, and storage-class memory, tiered memory systems have become a reality. Page migration is the de facto method within operating systems for managing tiered memory. It aims to bring hot data whenever possible into fast memory to optimize the performance of data accesses while using slow memory to accommodate data spilled from fast memory. While the existing research has demonstrated the effectiveness of various optimizations on page migration, it falls short of addressing a fundamental question: Is exclusive memory tiering, in which a page is either present in fast memory or slow memory, but not both simultaneously, the optimal strategy for tiered memory management? We demonstrate that page migration-based exclusive memory tiering suffers significant performance degradation when fast memory is under pressure. In this paper, we propose nonexclusive memory tiering, a page management strategy that retains a copy of pages recently promoted from slow memory to fast memory to mitigate memory thrashing. To enable non-exclusive memory tiering, we develop NOMAD, a new page management mechanism for Linux that features transactional page migration and page shadowing. NOMAD helps remove page migration off the critical path of program execution and makes migration completely asynchronous. Evaluations with carefully crafted micro-benchmarks and real-world applications show that NOMAD is able to achieve up to 6x performance improvement over the state-of-the-art transparent page placement (TPP) approach in Linux when under memory pressure. We also compare NOMAD with a recently proposed hardware-assisted, access sampling-based page migration approach and demonstrate NOMAD’s strengths and potential weaknesses in various scenarios. 
    more » « less
  4. The increasing demand of big data analytics for more main memory capacity in datacenters and exascale computing environments is driving the integration of heterogeneous memory technologies. The new technologies exhibit vastly greater differences in access latencies, bandwidth and capacity compared to the traditional NUMA systems. Leveraging this heterogeneity while also delivering application performance enhancements requires intelligent data placement. We present Kleio, a page scheduler with machine intelligence for applications that execute across hybrid memory components. Kleio is a hybrid page scheduler that combines existing, lightweight, history-based data tiering methods for hybrid memory, with novel intelligent placement decisions based on deep neural networks. We contribute new understanding toward the scope of benefits that can be achieved by using intelligent page scheduling in comparison to existing history-based approaches, and towards the choice of the deep learning algorithms and their parameters that are effective for this problem space. Kleio incorporates a new method for prioritizing pages that leads to highest performance boost, while limiting the resulting system resource overheads. Our performance evaluation indicates that Kleio reduces on average 80% of the performance gap between the existing solutions and an oracle with knowledge of future access pattern. Kleio provides hybrid memory systems with fast and effective neural network training and prediction accuracy levels, which bring significant application performance improvements with limited resource overheads, so as to lay the grounds for its practical integration in future systems. 
    more » « less
  5. Current state-of-the-art systems for hybrid memory management are enriched with machine intelligence. To enable the practical use of Machine Learning (ML), system-level page schedulers focus the ML model training over a small subset of the applications’ memory footprint. At the same time, they use existing lightweight historical information to predict the access behavior of majority of the pages. To maximize application performance improvements, the pages selected for machine learning-based management are identified with elaborate page selection methods. These methods involve the calculation of detailed performance estimates depending on the configuration of the hybrid memory platform. This paper explores the opportunities to reduce such operational overheads of machine learning-based hybrid memory page schedulers via use of visualization techniques to depict memory access patterns, and reveal spatial and temporal correlations among the selected pages, that current methods fail to leverage. We propose an initial version of a visualization pipeline for prioritizing pages for machine learning, that is independent of the hybrid memory configuration. Our approach selects pages whose ML-based management delivers, on average, performance levels within 5% of current solutions, while reducing by 75 × the page selection time. We discuss future directions and make a case that visualization and computer vision methods can unlock new insights and reduce the operational complexity of emerging systems solutions. 
    more » « less