skip to main content


Title: ShapeShifter: Resolving the Hidden Latency Contention Problem in MEC
Mobile Edge Computing (MEC) creates new infrastructure at the edges of the mobile networks, thus providing transformative opportunities for applications seeking latency benefits by operating closer to end-users and devices. However, the reduced network distance between the application endpoints of the MEC flows causes pattern shifts in the packet bursts exchanged at the network edges. The longer and denser bursts create a new source of contention that is not considered by current solutions. As a result, naively collocating applications onto the MEC tier can negatively affect latency-critical workloads, resulting in up to 73% packets experiencing as much as 3.8x increased latency. This makes it impossible to support latency-centric SLOs in MEC, obviating its expected benefits from MEC. This paper is the first to describe this new contention point in mobile networks and its potentially crippling impact on the achievable latency benefit from MEC. We propose ShapeShifter, a new component in the MEC architecture which solves the MEC latency contention problem through adaptive latency-centric burst management of MEC flows. ShapeShifter is effective - it eliminates SLO violations for latency-critical applications and improves application performance in multi-tenant scenarios by up to 3.8 x – and practical – it can be deployed with minimal disruption to the current mobile network ecosystem.  more » « less
Award ID(s):
1909769
NSF-PAR ID:
10469914
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
237 to 251
Format(s):
Medium: X
Location:
Seattle, WA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Convolutional neural networks (CNNs) play an important role in today's mobile and edge computing systems for vision-based tasks like object classification and detection. However, state-of-the-art methods on CNN acceleration are trapped in either limited practical latency speed-up on general computing platforms or latency speed-up with severe accuracy loss. In this paper, we propose a spatial-based dynamic CNN acceleration framework, NeuLens, for mobile and edge platforms. Specially, we design a novel dynamic inference mechanism, assemble region-aware convolution (ARAC) supernet, that peels off redundant operations inside CNN models as many as possible based on spatial redundancy and channel slicing. In ARAC supernet, the CNN inference flow is split into multiple independent micro-flows, and the computational cost of each can be autonomously adjusted based on its tiled-input content and application requirements. These micro-flows can be loaded into hardware like GPUs as single models. Consequently, its operation reduction can be well translated into latency speed-up and is compatible with hardware-level accelerations. Moreover, the inference accuracy can be well preserved by identifying critical regions on images and processing them in the original resolution with large micro-flow. Based on our evaluation, NeuLens outperforms baseline methods by up to 58% latency reduction with the same accuracy and by up to 67.9% accuracy improvement under the same latency/memory constraints. 
    more » « less
  2. Hardware memory disaggregation is an emerging trend in datacenters that provides access to remote memory as part of a shared pool or unused memory on machines across the network. Memory disaggregation aims to improve memory utilization and scale memory-intensive applications. Current state-of-the-art prototypes have shown that hardware disaggregated memory is a reality at the rack-scale. However, the memory utilization benefits of memory disaggregation can only be fully realized at larger scales enabled by a datacenter-wide network. Introduction of a datacenter network results in new performance and reliability failures that may manifest as higher network latency. Additionally, sharing of the network introduces new points of contention between multiple applications. In this work, we characterize the impact of variable network latency and contention in an open-source hardware disaggregated memory prototype - ThymesisFlow. To support our characterization, we have developed a delay injection framework that introduces delays in remote memory access to emulate network latency. Based on the characterization results, we develop insights into how reliability and resource allocation mechanisms should evolve to support hardware memory disaggregation beyond rack-scale in datacenters. 
    more » « less
  3. The software-defined networking (SDN) paradigm promises greater control and understanding of enterprise network activities, particularly for management applications that need awareness of network-wide behavior. However, the current focus on switch-based SDNs raises concerns about data-plane scalability, especially when using fine-grained flows. Further, these switch-centric approaches lack visibility into end-host and application behaviors, which are valuable when making access control decisions. In recent work, we proposed a host-based SDN in which we installed software on the end-hosts and used a centralized network control to manage the flows. This improve scalability and provided application information for use in network policy. However, that approach was not compatible with OpenFlow and had provided only conservative estimates of possible network performance. In this work, we create a high performance host-based SDN that is compatible with the OpenFlow protocol. Our approach, DeepContext, provides details about the application context to the network controller, allowing enhanced decision-making. We evaluate the performance of DeepContext, comparing it to traditional networks and Open vSwitch deployments. We further characterize the completeness of the data provided by the system and the resulting benefits. 
    more » « less
  4. Mobile devices such as drones and autonomous vehicles increasingly rely on object detection (OD) through deep neural networks (DNNs) to perform critical tasks such as navigation, target-tracking and surveillance, just to name a few. Due to their high complexity, the execution of these DNNs requires excessive time and energy. Low-complexity object tracking (OT) is thus used along with OD, where the latter is periodically applied to generate "fresh" references for tracking. However, the frames processed with OD incur large delays, which does not comply with real-time applications requirements. Offloading OD to edge servers can mitigate this issue, but existing work focuses on the optimization of the offloading process in systems where the wireless channel has a very large capacity. Herein, we consider systems with constrained and erratic channel capacity, and establish parallel OT (at the mobile device) and OD (at the edge server) processes that are resilient to large OD latency. We propose Katch-Up, a novel tracking mechanism that improves the system resilience to excessive OD delay. We show that this technique greatly improves the quality of the reference available to tracking, and boosts performance up to 33%. However, while Katch-Up significantly improves performance, it also increases the computing load of the mobile device. Hence, we design SmartDet, a low-complexity controller based on deep reinforcement learning (DRL) that learns to achieve the right trade-off between resource utilization and OD performance. SmartDet takes as input highly-heterogeneous context-related information related to the current video content and the current network conditions to optimize frequency and type of OD offloading, as well as Katch-Up utilization. We extensively evaluate SmartDet on a real-world testbed composed by a JetSon Nano as mobile device and a GTX 980 Ti as edge server, connected through a Wi-Fi link, to collect several network-related traces, as well as energy measurements. We consider a state-of-the-art video dataset (ILSVRC 2015 - VID) and state-of-the-art OD models (EfficientDet 0, 2 and 4). Experimental results show that SmartDet achieves an optimal balance between tracking performance – mean Average Recall (mAR) and resource usage. With respect to a baseline with full Katch-Up usage and maximum channel usage, we still increase mAR by 4% while using 50% less of the channel and 30% power resources associated with Katch-Up. With respect to a fixed strategy using minimal resources, we increase mAR by 20% while using Katch-Up on 1/3 of the frames. 
    more » « less
  5. Rapid advancements in the fifth generation (5G) communication technology and mobile edge computing (MEC) paradigm have led to the proliferation of unmanned aerial vehicles (UAV) in urban air mobility (UAM) networks, which provide intelligent services for diversified smart city scenarios. Meanwhile, the widely deployed Internet of drones (IoD) in smart cities has also brought up new concerns regarding performance, security, and privacy. The centralized framework adopted by conventional UAM networks is not adequate to handle high mobility and dynamicity. Moreover, it is necessary to ensure device authentication, data integrity, and privacy preservation in UAM networks. Thanks to its characteristics of decentralization, traceability, and unalterability, blockchain is recognized as a promising technology to enhance security and privacy for UAM networks. In this paper, we introduce LightMAN, a lightweight microchained fabric for data assurance and resilience-oriented UAM networks. LightMAN is tailored for small-scale permissioned UAV networks, in which a microchain acts as a lightweight distributed ledger for security guarantees. Thus, participants are enabled to authenticate drones and verify the genuineness of data that are sent to/from drones without relying on a third-party agency. In addition, a hybrid on-chain and off-chain storage strategy is adopted that not only improves performance (e.g., latency and throughput) but also ensures privacy preservation for sensitive information in UAM networks. A proof-of-concept prototype is implemented and tested on a micro-air–vehicle link (MAVLink) simulator. The experimental evaluation validates the feasibility and effectiveness of the proposed LightMAN solution. 
    more » « less