skip to main content


This content will become publicly available on October 17, 2024

Title: Designing Mixed-Category Stochastic Microstructures by Deep Generative Model-based and Curvature Functional-based Methods
Bridging the gaps among various categories of stochastic microstructures remains a challenge in the design representation of microstructural materials. Each microstructure category requires certain unique mathematical and statistical methods to define the design space (design representation). The design representation methods are usually incompatible between two different categories of stochastic microstructures. The common practice of pre-selecting the microstructure category and the associated design representation method before conducting rigorous computational design restricts the design freedom and hinders the discovery of innovative microstructure designs. To overcome this issue, this paper proposes and compares two novel methods, the deep generative modeling-based method and the curvature functional-based method, to understand their pros and cons in designing mixed-category stochastic microstructures for desired properties. For the deep generative modeling-based method, the Variational Autoencoder is employed to generate an unstructured latent space as the design space. For the curvature functional-based method, the microstructure geometry is represented by curvature functionals, of which the functional parameters are employed as the microstructure design variables. Regressors of the microstructure design variables-property relationship are trained for microstructure design optimization. A comparative study is conducted to understand the relative merits of these two methods in terms of computational cost, continuous transition, design scalability, design diversity, dimensionality of the design space, interpretability of the statistical equivalency, and design performance.

 
more » « less
Award ID(s):
2142290
NSF-PAR ID:
10469944
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Mechanical Design
ISSN:
1050-0472
Page Range / eLocation ID:
1 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Computational methods are increasingly being incorporated into the exploitation of microstructure–property relationships for microstructure-sensitive design of materials. In the present work, we propose non-intrusive materials informatics methods for the high-throughput exploration and analysis of a synthetic microstructure space using a machine learning-reinforced multi-phase-field modeling scheme. We specifically study the interface energy space as one of the most uncertain inputs in phase-field modeling and its impact on the shape and contact angle of a growing phase during heterogeneous solidification of secondary phase between solid and liquid phases. We evaluate and discuss methods for the study of sensitivity and propagation of uncertainty in these input parameters as reflected on the shape of the Cu6Sn5intermetallic during growth over the Cu substrate inside the liquid Sn solder due to uncertain interface energies. The sensitivity results rankσSI,σIL, andσIL, respectively, as the most influential parameters on the shape of the intermetallic. Furthermore, we use variational autoencoder, a deep generative neural network method, and label spreading, a semi-supervised machine learning method for establishing correlations between inputs of outputs of the computational model. We clustered the microstructures into three categories (“wetting”, “dewetting”, and “invariant”) using the label spreading method and compared it with the trend observed in the Young-Laplace equation. On the other hand, a structure map in the interface energy space is developed that showsσSIandσSLalter the shape of the intermetallic synchronously where an increase in the latter and decrease in the former changes the shape from dewetting structures to wetting structures. The study shows that the machine learning-reinforced phase-field method is a convenient approach to analyze microstructure design space in the framework of the ICME.

     
    more » « less
  2. Tunable dry adhesion is a crucial mechanism in compliant manipulation. The gripping force can be controlled by reversibly varying the physical properties (e.g., stiffness) of the composite via external stimuli. The maximal gripping force Fmaxand its tunability depend on, among other factors, the stress distribution on the gripping interface and its fracture dynamics (during detaching), which in turn are determined by the composite microstructure. Here, we present a computational framework for the modeling and design of a class of binary smart composites containing a porous low-melting-point alloy (LMPA) phase and a polymer phase, in order to achieve desirable dynamically tunable dry adhesion. We employ spatial correlation functions to quantify, model, and represent the complex bi-continuous microstructure of the composites, from which a wide spectrum of realistic virtual 3D composite microstructures can be generated using stochastic optimization. A recently developed volume-compensated lattice-particle method is then employed to model the dynamic interfacial fracture process, where the gripper is detached from the object, to compute Fmaxfor different composite microstructures. We focus on the interface defect tuning mechanism for dry adhesion tuning enabled by the composite, and find that for an optimal microstructure among the ones studied here, a tenfold dynamic tuning of Fmaxbefore and after the thermal expansion of the LMPA phase can be achieved. Our computational results can provide valuable guidance for experimental fabrication of the LMPA–polymer composites.

     
    more » « less
  3. The phase-field method is an attractive computational tool for simulating microstructural evolution during phase separation, including solidification and spinodal decomposition. However, the high computational cost associated with solving phase-field equations currently limits our ability to comprehend phase transformations. This article reports a novel phase-field emulator based on the tensor decomposition of the evolving microstructures and their corresponding two-point correlation functions to predict microstructural evolution at arbitrarily small time scales that are otherwise nontrivial to achieve using traditional phase-field approaches. The reported technique is based on obtaining a low-dimensional representation of the microstructures via tensor decomposition, and subsequently, predicting the microstructure evolution in the low-dimensional space using Gaussian process regression (GPR). Once we obtain the microstructure prediction in the low-dimensional space, we employ a hybrid input–output phase-retrieval algorithm to reconstruct the microstructures. As proof of concept, we present the results on microstructure prediction for spinodal decomposition, although the method itself is agnostic of the material parameters. Results show that we are able to predict microstructure evolution sequences that closely resemble the true microstructures (average normalized mean square of 6.78×10^−7) at time scales half of that employed in obtaining training data. Our data-driven microstructure emulator opens new avenues to predict the microstructural evolution by leveraging phase-field simulations and physical experimentation where the time resolution is often quite large due to limited resources and physical constraints, such as the phase coarsening experiments previously performed in microgravity. 
    more » « less
  4. Liu, Jin (Ed.)
    Generative models rely on the idea that data can be represented in terms of latent variables which are uncorrelated by definition. Lack of correlation among the latent variable support is important because it suggests that the latent-space manifold is simpler to understand and manipulate than the real-space representation. Many types of generative model are used in deep learning,e.g., variational autoencoders (VAEs) and generative adversarial networks (GANs). Based on the idea that the latent space behaves like a vector space Radford et al. (2015), we ask whether we can expand the latent space representation of our data elements in terms of an orthonormal basis set. Here we propose a method to build a set of linearly independent vectors in the latent space of a trained GAN, which we call quasi-eigenvectors. These quasi-eigenvectors have two key properties: i) They span the latent space, ii) A set of these quasi-eigenvectors map to each of the labeled features one-to-one. We show that in the case of the MNIST image data set, while the number of dimensions in latent space is large by design, 98% of the data in real space map to a sub-domain of latent space of dimensionality equal to the number of labels. We then show how the quasi-eigenvectors can be used for Latent Spectral Decomposition (LSD). We apply LSD to denoise MNIST images. Finally, using the quasi-eigenvectors, we construct rotation matrices in latent space which map to feature transformations in real space. Overall, from quasi-eigenvectors we gain insight regarding the latent space topology. 
    more » « less
  5. A statistical emulator can be used as a surrogate of complex physics-based calculations to drastically reduce the computational cost. Its successful implementation hinges on an accurate representation of the nonlinear response surface with a high-dimensional input space. Conventional “space-filling” designs, including random sampling and Latin hypercube sampling, become inefficient as the dimensionality of the input variables increases, and the predictive accuracy of the emulator can degrade substantially for a test input distant from the training input set. To address this fundamental challenge, we develop a reliable emulator for predicting complex functionals by active learning with error control (ALEC). The algorithm is applicable to infinite-dimensional mapping with high-fidelity predictions and a controlled predictive error. The computational efficiency has been demonstrated by emulating the classical density functional theory (cDFT) calculations, a statistical-mechanical method widely used in modeling the equilibrium properties of complex molecular systems. We show that ALEC is much more accurate than conventional emulators based on the Gaussian processes with “space-filling” designs and alternative active learning methods. In addition, it is computationally more efficient than direct cDFT calculations. ALEC can be a reliable building block for emulating expensive functionals owing to its minimal computational cost, controllable predictive error, and fully automatic features. 
    more » « less