Computational methods are increasingly being incorporated into the exploitation of microstructure–property relationships for microstructure-sensitive design of materials. In the present work, we propose non-intrusive materials informatics methods for the high-throughput exploration and analysis of a synthetic microstructure space using a machine learning-reinforced multi-phase-field modeling scheme. We specifically study the interface energy space as one of the most uncertain inputs in phase-field modeling and its impact on the shape and contact angle of a growing phase during heterogeneous solidification of secondary phase between solid and liquid phases. We evaluate and discuss methods for the study of sensitivity and propagation of uncertainty in these input parameters as reflected on the shape of the Cu6Sn5intermetallic during growth over the Cu substrate inside the liquid Sn solder due to uncertain interface energies. The sensitivity results rank
This content will become publicly available on October 17, 2024
Designing Mixed-Category Stochastic Microstructures by Deep Generative Model-based and Curvature Functional-based Methods
Bridging the gaps among various categories of stochastic microstructures remains a challenge in the design representation of microstructural materials. Each microstructure category requires certain unique mathematical and statistical methods to define the design space (design representation). The design representation methods are usually incompatible between two different categories of stochastic microstructures. The common practice of pre-selecting the microstructure category and the associated design representation method before conducting rigorous computational design restricts the design freedom and hinders the discovery of innovative microstructure designs. To overcome this issue, this paper proposes and compares two novel methods, the deep generative modeling-based method and the curvature functional-based method, to understand their pros and cons in designing mixed-category stochastic microstructures for desired properties. For the deep generative modeling-based method, the Variational Autoencoder is employed to generate an unstructured latent space as the design space. For the curvature functional-based method, the microstructure geometry is represented by curvature functionals, of which the functional parameters are employed as the microstructure design variables. Regressors of the microstructure design variables-property relationship are trained for microstructure design optimization. A comparative study is conducted to understand the relative merits of these two methods in terms of computational cost, continuous transition, design scalability, design diversity, dimensionality of the design space, interpretability of the statistical equivalency, and design performance.
more »
« less
- Award ID(s):
- 2142290
- NSF-PAR ID:
- 10469944
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Mechanical Design
- ISSN:
- 1050-0472
- Page Range / eLocation ID:
- 1 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract σ SI ,σ IL , andσ IL , respectively, as the most influential parameters on the shape of the intermetallic. Furthermore, we use variational autoencoder, a deep generative neural network method, and label spreading, a semi-supervised machine learning method for establishing correlations between inputs of outputs of the computational model. We clustered the microstructures into three categories (“wetting”, “dewetting”, and “invariant”) using the label spreading method and compared it with the trend observed in the Young-Laplace equation. On the other hand, a structure map in the interface energy space is developed that showsσ SI andσ SL alter the shape of the intermetallic synchronously where an increase in the latter and decrease in the former changes the shape from dewetting structures to wetting structures. The study shows that the machine learning-reinforced phase-field method is a convenient approach to analyze microstructure design space in the framework of the ICME. -
The phase-field method is an attractive computational tool for simulating microstructural evolution during phase separation, including solidification and spinodal decomposition. However, the high computational cost associated with solving phase-field equations currently limits our ability to comprehend phase transformations. This article reports a novel phase-field emulator based on the tensor decomposition of the evolving microstructures and their corresponding two-point correlation functions to predict microstructural evolution at arbitrarily small time scales that are otherwise nontrivial to achieve using traditional phase-field approaches. The reported technique is based on obtaining a low-dimensional representation of the microstructures via tensor decomposition, and subsequently, predicting the microstructure evolution in the low-dimensional space using Gaussian process regression (GPR). Once we obtain the microstructure prediction in the low-dimensional space, we employ a hybrid input–output phase-retrieval algorithm to reconstruct the microstructures. As proof of concept, we present the results on microstructure prediction for spinodal decomposition, although the method itself is agnostic of the material parameters. Results show that we are able to predict microstructure evolution sequences that closely resemble the true microstructures (average normalized mean square of 6.78×10^−7) at time scales half of that employed in obtaining training data. Our data-driven microstructure emulator opens new avenues to predict the microstructural evolution by leveraging phase-field simulations and physical experimentation where the time resolution is often quite large due to limited resources and physical constraints, such as the phase coarsening experiments previously performed in microgravity.more » « less
-
Synthetic microstructure generation algorithms have emerged as a key tool for enabling large ICME and Materials Informatics efforts. In particular, statistically conditioned generative models allow researchers to systematically explore complex design spaces encountered in microstructure design. In spite of the engineering importance of polycrystalline materials, generative frameworks for these systems remain extremely limited. This stunted development – in comparison to the N-phase microstructure generation problem – occurs because of the complexities inherent to the representation of the polycrystalline orientation fields. For example, these fields exhibit multiple crystal- and sample-level symmetries. In prior work, these difficulties have resulted in instabilities in deep generative models for polycrystalline microstructures. In this work, we propose the use of a Reduced-Order Generalized Spherical Harmonic (ROGSH) basis to address the challenge described above. The proposed approach accounts for the complex sample- and crystal-level symmetries, and produces well behaved and low dimensional representations whose space has a meaningful Euclidean measure. We then demonstrate the ROGSH basis’s remarkable ability to produce stable denoising diffusion models by using our recently established Local–Global generative framework to create visually realistic synthetic polycrystalline microstructures. Furthermore, we demonstrate that the generation process can be conditioned on both first- and second-order spatial statistics of the polycrystalline orientation fields.more » « less
-
null (Ed.)Abstract The data-driven approach is emerging as a promising method for the topological design of multiscale structures with greater efficiency. However, existing data-driven methods mostly focus on a single class of microstructures without considering multiple classes to accommodate spatially varying desired properties. The key challenge is the lack of an inherent ordering or “distance” measure between different classes of microstructures in meeting a range of properties. To overcome this hurdle, we extend the newly developed latent-variable Gaussian process (LVGP) models to create multi-response LVGP (MR-LVGP) models for the microstructure libraries of metamaterials, taking both qualitative microstructure concepts and quantitative microstructure design variables as mixed-variable inputs. The MR-LVGP model embeds the mixed variables into a continuous design space based on their collective effects on the responses, providing substantial insights into the interplay between different geometrical classes and material parameters of microstructures. With this model, we can easily obtain a continuous and differentiable transition between different microstructure concepts that can render gradient information for multiscale topology optimization. We demonstrate its benefits through multiscale topology optimization with aperiodic microstructures. Design examples reveal that considering multiclass microstructures can lead to improved performance due to the consistent load-transfer paths for micro- and macro-structures.more » « less
-
As modern electronic devices are increasingly miniaturized and integrated, their performance relies more heavily on effective thermal management. In this regard, two-phase cooling methods which capitalize on thin-film evaporation atop structured porous surfaces are emerging as potential solutions. In such porous structures, the optimum heat dissipation capacity relies on two competing objectives that depend on mass and heat transfer. Optimizing these objectives for effective thermal management is challenging due to the simulation costs and the high dimensionality of the design space which is often a voxelated microstructure representation that must also be manufacturable. We address these challenges by developing a data-driven framework for designing optimal porous microstructures for cooling applications. In our framework, we leverage spectral density functions to encode the design space via a handful of interpretable variables and, in turn, efficiently search it. We develop physics-based formulas to simulate the thermofluidic properties and assess the feasibility of candidate designs based on offline image-based analyses. To decrease the reliance on expensive simulations, we generate multi-fidelity data and build emulators to find Pareto-optimal designs. We apply our approach to a canonical problem on evaporator wick design and obtain fin-like topologies in the optimal microstructures which are also characteristics often observed in industrial applications.more » « less