Abstract Agricultural intensification has increased the use of chemical fertilizers, promoting plant growth and crop yield. Excessive use of nitrogen fertilizers leads to nutrient loss and low nitrogen use efficiency. Management of nitrogen fertilizer input requires close to real‐time information about the soil nitrate concentration. While there is extensive work developing nitrate ion sensing solutions for liquid media, few allow for in‐soil measurements. This study introduces inkjet‐printed potentiometric sensors, containing 2 electrodes, the reference electrode (RE) and the nitrate‐selective film‐encapsulated working electrode (WE). The interaction between the nitrate‐sensitive membrane and soil nitrate ions causes a change in potential across the RE and WE. Additionally, a hydrophilic Polyvinylidene Fluoride (PVDF) layer ensures the long‐term functionality of the sensor in wet soil environments by protecting it from charged soil particles while simultaneously allowing water to flow from the soil toward the sensor electrodes. The sensors are tested in sand and silt loam soil, demonstrating their versatility across soil types. The potential change can be related to the nitrate concentration in soil, with typical sensitivities of 45–55 mV decade−1. Overall, the use of the PVDF layer allows for direct sensing in moist soil environments, which is critical for developing soil nitrate sensors.
more »
« less
Enabling Smart Agriculture through Sensor-Integrated Microfluidic Chip to Monitor Nutrient Uptake in Plants
The soil microenvironment greatly influences a plant’s ability to absorb nutrients and germinate. Sensing these changes in soil medium is critical to understand plant nutrient requirements. Soil being dynamic represents changes in nutrient content, element mobility, texture, water-holding capacity, and microbiota which affects the nutrient levels. These minor changes affect the plant in early growth and development and studying these changes has always been challenging. Microfluidics provides a platform to study nutrient availability and exchange in small volumes of liquid or media resembling plant microenvironments. Here, we have developed a novel microfluidic chip-embedded molecular imprinted sensor for sensing nitrate and phosphate in the media. For data acquisition and recording we have implemented a potentiostat controlled via a microcontroller allowing data storage and transfer via a long-range radio module (LoRA). The microfluidic device’s functionality was validated by germination of the legume crimson red and recoding the nitrate and phosphate levels in media for 7 d. The MIP-based sensor measures nitrate and phosphate, in the range from 1 to 1000 mM. The accuracy of detection for nitrate and phosphate showed 99% and 95% respectively. The chip coupled with MIP based sensor for nutrient analysis serves as a platform technology for studying nitrate and phosphate nutrient exchange and interaction. This chip in the future can be implemented to study plant deficiencies, drought resistance, and plant immunity.
more »
« less
- Award ID(s):
- 1827682
- PAR ID:
- 10470054
- Publisher / Repository:
- The Electrochemical Society
- Date Published:
- Journal Name:
- ECS Sensors Plus
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2754-2726
- Format(s):
- Medium: X Size: Article No. 043201
- Size(s):
- Article No. 043201
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Continuous monitoring of soil nitrate levels is essential for effective soil nutrient management. However, limited soil pore water at low soil water content levels hinders miniaturized soil sensor surfaces from efficiently interacting with nutrient ions. To address this, we introduce a nanofibrous mat designed to enhance nitrate detection by increasing connectivity between miniature sensors and the soil solution. Composed of polysulfone, polymethylmethacrylate, and polyvinyl alcohol, this mat is fabricated using electrospinning and electrospray methods to balance water absorbency, mechanical durability, and ease of manufacturing. When wrapped around an ion-selective electrode-based nitrate sensor, the mat improves access to soil pore water, acts as a filter, prevents direct sensor-soil particle contact, and reduces the impact of soil particle surface charges on sensor measurements. Continuous nitrate monitoring with both mat-wrapped and bare sensors was conducted in controlled and field environments. Linear regression analysis indicates that the mat-wrapped sensor has a stronger correlation with conventional salt extract methods for measuring soil nitrate levels. T-tests confirm statistically significant differences between sensor measurements and the salt extraction method. Additionally, Bland-Altman analysis reveals that mat-wrapping reduces mean bias and narrows the limits of agreement, demonstrating improved agreement with the conventional method. Notably, the mat-wrapped sensor performs consistently across varying soil moisture conditions. These findings suggest that the water-absorbing mat improves the ability of the sensor to monitor nitrate continuously by accommodating varying soil moisture levels over time, making the mat-wrapped soil nitrate sensor a viable improvement for in-field measurements of soil solution chemistry.more » « less
-
Coulter counters electrically detect and size suspended particles from intermittent changes in impedance between electrodes. By combining the impedance-based sensing with microfabrication, Coulter counters can be distributed across a lab-on-a-chip platform for code-multiplexed monitoring of microfluidic manipulations. In this paper, we augment a code-multiplexed Coulter sensor network with a deep learning-based decoding algorithm for multiplexed detection of cancer cells sorted into different microfluidic channels.more » « less
-
Abstract The design of new remediation strategies and materials for treating saline–alkaline soils is of fundamental and practical importantance for many applications. Conventional soil remediation strategies mainly focus on the development of fertilizers or additives for water, nutrient, and heavy metal managements in soils, but they often overlook a soil sensing function for early detection of salinization/alkalization levels toward optimal and timely soil remediation. Here, new smart soils, structurally consisting of the upper signal soil and the bottom hygroscopic bed and chemically including zwitterionic, thermo‐responsive poly(NIPAM‐co‐VPES) and poly(NIPAM‐co‐SBAA) aerogels in each soil layer are formulated. Upon salinization, the resultant smart soils exhibit multiple superior capacities for reducing the soil salinity and alkalinity through ion exchange, controlling the water cycling, modulating the degradation of pyridine‐base ligands into water‐soluble, nitrogenous salts‐rich ingredients for soil fertility, and real‐time monitoring salinized soils via pH‐induced allochroic color changes. Further studies of plant growth in smart soils with or without salinization treatments confirm a synergy effect of soil remediation and soil sensing on facilitating the growth of plants and increasing the saline–alkaline tolerance of plants. The esign concept of smart soils can be further expanded for soil remediation and assessment.more » « less
-
Reguera, Gemma (Ed.)ABSTRACT Motile plant-associated bacteria use chemotaxis and dedicated chemoreceptors to navigate gradients in their surroundings and to colonize host plant surfaces. Here, we characterize a chemoreceptor that we named Tlp2 in the soil alphaproteobacteriumAzospirillum brasilense. We show that the Tlp2 ligand-binding domain is related to the 4-helix bundle family and is conserved in chemoreceptors found in the genomes of many soil- and sediment-dwelling alphaproteobacteria. The promoter oftlp2is regulated in an NtrC- and RpoN-dependent manner and is most upregulated under conditions of nitrogen fixation or in the presence of nitrate. Using fluorescently tagged Tlp2 (Tlp2-YFP), we show that this chemoreceptor is present in low abundance in chemotaxis-signaling clusters and is prone to degradation. We also obtained evidence that the presence of ammonium rapidly disrupts Tlp2-YFP localization. Behavioral experiments using a strain lacking Tlp2 and variants of Tlp2 lacking conserved arginine residues suggest that Tlp2 mediates chemotaxis in gradients of nitrate and nitrite, with the R159 residue being essential for Tlp2 function. We also provide evidence that Tlp2 is essential for root surface colonization of some plants (teff, red clover, and cowpea) but not others (wheat, sorghum, alfalfa, and pea). These results highlight the selective role of nitrate sensing and chemotaxis in plant root surface colonization and illustrate the relative contribution of chemoreceptors to chemotaxis and root surface colonization.IMPORTANCEBacterial chemotaxis mediates host-microbe associations, including the association of beneficial bacteria with the roots of host plants. Dedicated chemoreceptors specify sensory preferences during chemotaxis. Here, we show that a chemoreceptor mediating chemotaxis to nitrate is important in the beneficial soil bacterium colonization of some but not all plant hosts tested. Nitrate is the preferred nitrogen source for plant nutrition, and plants sense and tightly control nitrate transport, resulting in varying nitrate uptake rates depending on the plant and its physiological state. Nitrate is thus a limiting nutrient in the rhizosphere. Chemotaxis and dedicated chemoreceptors for nitrate likely provide motile bacteria with a competitive advantage to access this nutrient in the rhizosphere.more » « less
An official website of the United States government
