Image registration has been widely studied over the past several decades, with numerous applications in science, engineering and medicine. Most of the conventional mathematical models for large deformation image registration rely on prescribed landmarks, which usually require tedious manual labeling. In recent years, there has been a surge of interest in the use of machine learning for image registration. In this paper, we develop a novel method for large deformation image registration by a fusion of quasiconformal theory and convolutional neural network (CNN). More specifically, we propose a quasiconformal energy model with a novel fidelity term that incorporates the features extracted using a pre-trained CNN, thereby allowing us to obtain meaningful registration results without any guidance of prescribed landmarks. Moreover, unlike many prior image registration methods, the bijectivity of our method is guaranteed by quasiconformal theory. Experimental results are presented to demonstrate the effectiveness of the proposed method. More broadly, our work sheds light on how rigorous mathematical theories and practical machine learning approaches can be integrated for developing computational methods with improved performance.
more » « less- Award ID(s):
- 2002103
- NSF-PAR ID:
- 10470094
- Publisher / Repository:
- AIMS
- Date Published:
- Journal Name:
- Inverse Problems and Imaging
- Volume:
- 16
- Issue:
- 4
- ISSN:
- 1930-8337
- Page Range / eLocation ID:
- 1019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Deformable image registration (DIR) is an active research topic in biomedical imaging. There is a growing interest in developing DIR methods based on deep learning (DL). A traditional DL approach to DIR is based on training a convolutional neural network (CNN) to estimate the registration field between two input images. While conceptually simple, this approach comes with a limitation that it exclusively relies on a pre-trained CNN without explicitly enforcing fidelity between the registered image and the reference. We present plug-and-play image registration network (PIRATE) as a new DIR method that addresses this issue by integrating an explicit data-fidelity penalty and a CNN prior. PIRATE pre-trains a CNN denoiser on the registration field and "plugs" it into an iterative method as a regularizer. We additionally present PIRATE+ that fine-tunes the CNN prior in PIRATE using deep equilibrium models (DEQ). PIRATE+ interprets the fixed-point iteration of PIRATE as a network with effectively infinite layers and then trains the resulting network end-to-end, enabling it to learn more task-specific information and boosting its performance. Our numerical results on OASIS and CANDI datasets show that our methods achieve state-of-the-art performance on DIR.more » « less
-
Abstract This paper presents a novel application of convolutional neural network (CNN) models for filtering the intraseasonal variability of the tropical atmosphere. In this deep learning filter, two convolutional layers are applied sequentially in a supervised machine learning framework to extract the intraseasonal signal from the total daily anomalies. The CNN-based filter can be tailored for each field similarly to fast Fourier transform filtering methods. When applied to two different fields (zonal wind stress and outgoing longwave radiation), the index of agreement between the filtered signal obtained using the CNN-based filter and a conventional weight-based filter is between 95% and 99%. The advantage of the CNN-based filter over the conventional filters is its applicability to time series with the length comparable to the period of the signal being extracted.
Significance Statement This study proposes a new method for discovering hidden connections in data representative of tropical atmosphere variability. The method makes use of an artificial intelligence (AI) algorithm that combines a mathematical operation known as convolution with a mathematical model built to reflect the behavior of the human brain known as artificial neural network. Our results show that the filtered data produced by the AI-based method are consistent with the results obtained using conventional mathematical algorithms. The advantage of the AI-based method is that it can be applied to cases for which the conventional methods have limitations, such as forecast (hindcast) data or real-time monitoring of tropical variability in the 20–100-day range.
-
G., Renata Raidou ; Sommer, Björn ; W., Torsten Kuhlen ; Krone, Michael ; Schultz, Thomas ; Wu, Hsiang-Yun (Ed.)We introduce a novel multi-modal 3D image registration framework based on 3D user-guided deformation of both volume's shape and intensity values. Being able to apply deformations in 3D gives access to a wide new range of interactions allowing for the registration of images from any acquisition method and of any organ, complete or partial. Our framework uses a state of the art 3D volume rendering method for real-time feedback on the registration accuracy as well as the image deformation. We propose a novel methodological variation to accurately display 3D segmented voxel grids, which is a requirement in a registration context for visualizing a segmented atlas. Our pipeline is implemented in an open-source software (available via GitHub) and was directly used by biologists for registration of mouse brain model autofluorescence acquisition on the Allen Brain Atlas. The latter mapping allows them to retrieve regions of interest properly identified on the segmented atlas in acquired brain datasets and therefore extract only high-resolution images of those areas, avoiding the creation of images too large to be processed.more » « less
-
As the field of Topological Data Analysis continues to show success in theory and in applications, there has been increasing interest in using tools from this field with methods for machine learning. Using persistent homology, specifically persistence diagrams, as inputs to machine learning techniques requires some mathematical creativity. The space of persistence diagrams does not have the desirable properties for machine learning, thus methods such as kernel methods and vectorization methods have been developed. One such featurization of persistence diagrams by Perea, Munch and Khasawneh uses continuous, compactly supported functions, referred to as "template functions," which results in a stable vector representation of the persistence diagram. In this paper, we provide a method of adaptively partitioning persistence diagrams to improve these featurizations based on localized information in the diagrams. Additionally, we provide a framework to adaptively select parameters required for the template functions in order to best utilize the partitioning method. We present results for application to example data sets comparing classification results between template function featurizations with and without partitioning, in addition to other methods from the literature.more » « less
-
This paper presents a novel predictive model, MetaMorph, for metamorphic registration of images with appearance changes (i.e., caused by brain tumors). In contrast to previous learning-based registration methods that have little or no control over appearance-changes, our model introduces a new regularization that can effectively suppress the negative effects of appearance changing areas. In particular, we develop a piecewise regularization on the tangent space of diffeomorphic transformations (also known as initial velocity fields) via learned segmentation maps of abnormal regions. The geometric transformation and appearance changes are treated as joint tasks that are mutually beneficial. Our model MetaMorph is more robust and accurate when searching for an optimal registration solution under the guidance of segmentation, which in turn improves the segmentation performance by providing appropriately augmented training labels. We validate MetaMorph on real 3D human brain tumor magnetic resonance imaging (MRI) scans. Experimental results show that our model outperforms the state-of-the-art learning-based registration models. The proposed MetaMorph has great potential in various image-guided clinical interventions, e.g., real-time image-guided navigation systems for tumor removal surgery.more » « less