skip to main content


Title: ACCESS Pegasus: Bringing Workflows to the ACCESS Masses
Award ID(s):
1835725
NSF-PAR ID:
10470195
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
478 to 480
Format(s):
Medium: X
Location:
Portland OR USA
Sponsoring Org:
National Science Foundation
More Like this
  1. This study examines the relationship between households' access to critical facilities day-to-day and during weather-related extreme events. Despite a robust understanding of both day-to-day access and access during disasters, the interplay between the two remains unclear. To bridge this knowledge gap, we propose a novel empirical approach, using a Texas statewide household survey (N = 810). The survey evaluates day-to-day and past events access, exploring the experiences of respondents during multiple recent disasters, rather than focusing on a specific hazard. Using correlation analysis, we examined various access-related factors such as day-to-day trip duration, alternative trip duration, and loss of access during past events. Additionally, we evaluated the association between access-related factors and sociodemographic characteristics such as income, ethnicity, and urban status. The results indicate: (1) daily trip duration to critical facilities is associated with disrupted access during storm events, and (2) disparities persist during both day-to-day times and during extreme events. These results bring new insights to the existing body of knowledge on day-to-day access and access during disasters. The findings provide scientifically grounded evidence to city managers and planners, emphasizing the need for equitable distribution of facilities to enhance access to essential facilities both in daily life and during extreme weather-related events. 
    more » « less
  2. This paper treats point-to-point, multiple access and random access lossless source coding in the finite-blocklength regime. A random coding technique is developed, and its power in analyzing the third-order coding performance is demonstrated in all three scenarios. Results include a third-order-optimal characterization of the Slepian-Wolf rate region and a proof showing that for dependent sources, the independent encoders used by Slepian-Wolf codes can achieve the same third-order- optimal performance as a single joint encoder. The concept of random access source coding, which generalizes the multiple access scenario to allow for a subset of participating encoders that is unknown a priori to both the encoders and the decoder, is introduced. Contributions include a new definition of the probabilistic model for a random access-discrete multiple source, a general random access source coding scheme that employs a rateless code with sporadic feedback, and an analysis demonstrating via a random coding argument that there exists a deterministic code of the proposed structure that simultaneously achieves the third- order-optimal performance of Slepian-Wolf codes for all possible subsets of encoders. 
    more » « less