ACCESS Pegasus: Bringing Workflows to the ACCESS Masses
- Award ID(s):
- 1835725
- PAR ID:
- 10470195
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9781450399852
- Page Range / eLocation ID:
- 478 to 480
- Format(s):
- Medium: X
- Location:
- Portland OR USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
Fine-grained network telemetry is becoming a modern datacenter standard and is the basis of essential applications such as congestion control, load balancing, and advanced troubleshooting. As network size increases and telemetry gets more fine-grained, there is a tremendous growth in the amount of data needed to be reported from switches to collectors to enable network-wide view. As a consequence, it is progressively hard to scale data collection systems. We introduce Direct Telemetry Access (DTA), a solution optimized for aggregating and moving hundreds of millions of reports per second from switches into queryable data structures in collectors' memory. DTA is lightweight and it is able to greatly reduce overheads at collectors. DTA is built on top of RDMA, and we propose novel and expressive reporting primitives to allow easy integration with existing state-of-the-art telemetry mechanisms such as INT or Marple. We show that DTA significantly improves telemetry collection rates. For example, when used with INT, it can collect and aggregate over 400M reports per second with a single server, improving over the Atomic MultiLog by up to 16x.more » « less
-
null (Ed.)Increasingly, support for students with disabilities in post-secondary education has boosted enrollment and graduates rates. Yet, such successes are not translated to doctoral degrees. For example, in 2018, the National Science Foundation reported 3% of math and computer science doctorate recipients identified as having a visual limitation while 1.2% identified as having a hearing limitation. To better understand why few students with disabilities pursue PhDs in computing and related fields, we conducted an interview study with 19 current and former graduate students who identified as blind or low vision, or deaf or hard of hearing. We asked participants about challenges or barriers they encountered in graduate school. We asked about accommodations they received, or did not receive, and about different forms of support. We found that a wide range of inaccessibility issues in research, courses, and in managing accommodations impacted student progress. Contributions from this work include identifying two forms of access inequality that emerged: (1) access differential: the gap between the access that non/disabled students experience, and (2) inequitable access: the degree of inadequacy of existing accommodations to address inaccessibility.more » « less