skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lossless Source Coding in the Point-to-Point, Multiple Access, and Random Access Scenarios
This paper treats point-to-point, multiple access and random access lossless source coding in the finite-blocklength regime. A random coding technique is developed, and its power in analyzing the third-order coding performance is demonstrated in all three scenarios. Results include a third-order-optimal characterization of the Slepian-Wolf rate region and a proof showing that for dependent sources, the independent encoders used by Slepian-Wolf codes can achieve the same third-order- optimal performance as a single joint encoder. The concept of random access source coding, which generalizes the multiple access scenario to allow for a subset of participating encoders that is unknown a priori to both the encoders and the decoder, is introduced. Contributions include a new definition of the probabilistic model for a random access-discrete multiple source, a general random access source coding scheme that employs a rateless code with sporadic feedback, and an analysis demonstrating via a random coding argument that there exists a deterministic code of the proposed structure that simultaneously achieves the third- order-optimal performance of Slepian-Wolf codes for all possible subsets of encoders.  more » « less
Award ID(s):
1817241
PAR ID:
10149250
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE International Symposium on Information Theory (ISIT)
Page Range / eLocation ID:
1692 to 1696
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper applies error-exponent and dispersionstyle analyses to derive finite-blocklength achievability bounds for low-density parity-check (LDPC) codes over the point-to-point channel (PPC) and multiple access channel (MAC). The error-exponent analysis applies Gallager's error exponent to bound achievable symmetrical and asymmetrical rates in the MAC. The dispersion-style analysis begins with a generalization of the random coding union (RCU) bound from random code ensembles with i.i.d. codewords to random code ensembles in which codewords may be statistically dependent; this generalization is useful since the codewords of random linear codes such as LDPC codes are dependent. Application of the RCU bound yields finite-blocklength error bounds and asymptotic achievability results for both i.i.d. random codes and LDPC codes. For discrete, memoryless channels, these results show that LDPC codes achieve first- and second-order performance that is optimal for the PPC and identical to the best prior results for the MAC. 
    more » « less
  2. We consider the storage–retrieval rate trade-off in private information retrieval (PIR) systems using a Shannon-theoretic approach. Our focus is mostly on the canonical two-message two-database case, for which a coding scheme based on random codebook generation and the binning technique is proposed. This coding scheme reveals a hidden connection between PIR and the classic multiple description source coding problem. We first show that when the retrieval rate is kept optimal, the proposed non-linear scheme can achieve better performance over any linear scheme. Moreover, a non-trivial storage-retrieval rate trade-off can be achieved beyond space-sharing between this extreme point and the other optimal extreme point, achieved by the retrieve-everything strategy. We further show that with a method akin to the expurgation technique, one can extract a zero-error PIR code from the random code. Outer bounds are also studied and compared to establish the superiority of the non-linear codes over linear codes. 
    more » « less
  3. Santhanam, Rahul (Ed.)
    We give the first explicit constant rate, constant relative distance, linear codes with an encoder that runs in time n^{1 + o(1)} and space polylog(n) provided random access to the message. Prior to this work, the only such codes were non-explicit, for instance repeat accumulate codes [Divsalar et al., 1998] and the codes described in [Gál et al., 2013]. To construct our codes, we also give explicit, efficiently invertible, lossless condensers with constant entropy gap and polylogarithmic seed length. In contrast to encoders with random access to the message, we show that encoders with sequential access to the message can not run in almost linear time and polylogarithmic space. Our notion of sequential access is much stronger than streaming access. 
    more » « less
  4. This paper proposes a nested low-density parity-check (LDPC) code design. Combining this nested LDPC code with the random access coding strategy introduced by Yavas, Kostina, and Effros yields a random access LDPC (RA-LDPC) code for reliable communication in random access communication environments where neither the transmitters nor the receiver knows which or even how many transmitters wish to communicate at each moment. Coordination is achieved using sparse scheduled feedback. Bounds on the finite-blocklength performance of the RA-LDPC code under maximum likelihood (ML) decoding are derived using both error exponent and dispersion style analyses. Results include bounds on the penalty of the RA-LDPC code as a function of the LDPC code densities. 
    more » « less
  5. In this paper we consider the information-theoretic characterization of performance limits of a broad class of multiterminal communication problems with general continuousvalued sources and channels. In particular, we consider point-topoint source coding and channel coding with side information, distributed source coding with distortion constraints and function reconstruction problems (two-help-one). We develop an approach that uses fine quantization of the source and the channel variables followed by random coding with unstructured as well as structured (linear) code ensembles. This approach leads to lattice-like codes for general sources and channels. 
    more » « less