skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frequency-comb-based multidimensional coherent spectroscopy of systems with long-lived excited states*
Frequency-comb-based multidimensional coherent spectroscopy is a powerful optical method for studying nonlinear optical properties of samples with narrow resonances. It enables the measurement of multidimensional coherent spectra rapidly and with high spectral resolution. However, for some samples (especially cold atoms and molecules) the dephasing times are longer than the repetition periods of the excitation lasers and hence the nonlinear signals generated in the sample by the subsequent laser pulses will interfere with each other. Here we investigate this behavior and show its effect on multidimensional coherent spectra by solving the optical Bloch equations. *The material is based upon work supported by the National Science Foundation under Grant No. [1904704]  more » « less
Award ID(s):
1904704
PAR ID:
10470215
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Format(s):
Medium: X
Location:
APS March Meeting
Sponsoring Org:
National Science Foundation
More Like this
  1. Phase stability between pulse pairs defining Fourier-transform time delays can limit resolution and complicates development and adoption of multidimensional coherent spectroscopies. We demonstrate a data processing procedure to correct the long-term phase drift of the nonlinear signal during two-dimensional (2D) experiments based on the relative phase between scattered excitation pulses and a global phasing procedure to generate fully absorptive 2D electronic spectra of wafer-scale monolayer MoS2. Our correction results in a ∼30-fold increase in effective long-term signal phase stability, from ∼λ/2 to ∼λ/70 with negligible extra experimental time and no additional optical components. This scatter-based drift correction should be applicable to other interferometric techniques as well, significantly lowering the practical experimental requirements for this class of measurements. 
    more » « less
  2. The overall goal of photonics research is to understand and control light in new and richer ways to facilitate new and richer applications. Many major developments to this end have relied on nonlinear optical techniques, such as lasing, mode-locking, and parametric downconversion, to enable applications based on the interactions of coherent light with matter. These processes often involve nonlinear interactions between photonic and material degrees of freedom spanning multiple spatiotemporal scales. While great progress has been made with relatively simple optimizations, such as maximizing single-mode coherence or peak intensity alone, the ultimate achievement of coherent light engineering is complete, multidimensional control of light–light and light–matter interactions through tailored construction of complex optical fields and systems that exploit all of light’s degrees of freedom. This capability is now within sight, due to advances in telecommunications, computing, algorithms, and modeling. Control of highly multimode optical fields and processes also facilitates quantitative and qualitative advances in optical imaging, sensing, communication, and information processing since these applications directly depend on our ability to detect, encode, and manipulate information in as many optical degrees of freedom as possible. Today, these applications are increasingly being enhanced or enabled by both multimode engineering and nonlinearity. Here, we provide a brief overview of multimode nonlinear photonics, focusing primarily on spatiotemporal nonlinear wave propagation and, in particular, on promising future directions and routes to applications. We conclude with an overview of emerging processes and methodologies that will enable complex, coherent nonlinear photonic devices with many degrees of freedom. 
    more » « less
  3. Floquet state spectroscopy is an optical analogue of multiple quantum coherence nuclear magnetic resonance (MQC-NMR). Tunable ultrafast excitation pulses resonantly excite multiple states in a sample to form the Floquet state. The Floquet state emits multiple coherent beams at frequencies and in directions that conserve energy and momenta. The different output beams differ in the time ordering and coherences created by the excitation beams. They correspond to the different methodologies in the NMR family. Isolating a specific beam and monitoring the output intensity as a function of excitation frequencies creates multidimensional spectra containing cross-peaks between coupled states. The frequency range of the multidimensional spectra is limited by phase matching constraints. This paper presents a new, to the best of our knowledge, active phase matching strategy that increases the versatility of multidimensional Floquet state spectroscopy through both longer sample path lengths and larger spectral ranges. 
    more » « less
  4. Frequency-domain ultrafast coherent multidimensional spectroscopy has made possible a family of fully coherent spectroscopies that can create and interrogate characteristic superpositions of the quantum-mechanical states of a system under investigation. Typical applications include the resolution of couplings and dynamics among multiple electronic states in atoms, molecules, and materials. These methods require scanning the wavelengths of multiple, ultrafast light sources—often optical parametric amplifiers (OPAs). Spectral calibration of the OPA output (a.k.a. wavelength-tuning) involves optimizing the OPA output intensity by adjusting the angles of its component nonlinear crystals and motorized delay stages. When the spectral range addressed in the experiment is large, optimization and control of the one or more OPAs become complex. This work describes an automated calibration strategy that measures the multidimensional configuration-space of a typical 800-nm OPA over all angular and delay degrees-of-freedom in order to create a global tuning curve that spans its dynamic spectral range with optimal power and smooth interpolation. To accomplish this task, the optimization assesses the wavelength-dependent variations to the temporal and spatial characteristics of the OPA output caused by material dispersion so that compensations may be applied during a wavelength scan. 
    more » « less
  5. The nonlinear Gaussian-noise (GN) model is a useful analytical tool for the estimation of the impact of distortion due to Kerr nonlinearity on the performance of coherent optical communications systems with no inline dispersion compensation. The original nonlinear GN model was formulated for coherent optical communications systems with identical single-mode fiber spans. Since its inception, the original GN model has been modified for a variety of link configurations. However, its application to coherent optical communications systems with hybrid fiber spans, each composed of multiple fiber segments with different attributes, has attracted scarcely any attention. This invited paper is dedicated to the extended nonlinear GN model for coherent optical communications systems with hybrid fiber spans. We review the few publications on the topic and provide a unified formalism for the analytical calculation of the nonlinear noise variance. To illustrate the usefulness of the extended nonlinear GN model, we apply it to coherent optical communications systems with fiber spans composed of a quasi-single-mode fiber segment and a single-mode fiber segment in tandem. In this configuration, a quasi-single-mode fiber with large effective area is placed at the beginning of each span, to reduce most of the nonlinear distortion, followed by a single-mode fiber segment with smaller effective-area, to limit the multipath interference introduced by the quasi-single-mode fiber to acceptable levels. We show that the optimal fiber splitting ratio per span can be calculated with sufficient accuracy using the extended nonlinear GN model for hybrid fiber spans presented here. 
    more » « less