skip to main content


This content will become publicly available on January 25, 2025

Title: Strategies for phase matching control in a multidimensional Floquet state spectroscopy

Floquet state spectroscopy is an optical analogue of multiple quantum coherence nuclear magnetic resonance (MQC-NMR). Tunable ultrafast excitation pulses resonantly excite multiple states in a sample to form the Floquet state. The Floquet state emits multiple coherent beams at frequencies and in directions that conserve energy and momenta. The different output beams differ in the time ordering and coherences created by the excitation beams. They correspond to the different methodologies in the NMR family. Isolating a specific beam and monitoring the output intensity as a function of excitation frequencies creates multidimensional spectra containing cross-peaks between coupled states. The frequency range of the multidimensional spectra is limited by phase matching constraints. This paper presents a new, to the best of our knowledge, active phase matching strategy that increases the versatility of multidimensional Floquet state spectroscopy through both longer sample path lengths and larger spectral ranges.

 
more » « less
Award ID(s):
2203290
NSF-PAR ID:
10487563
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
49
Issue:
3
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 610
Size(s):
Article No. 610
Sponsoring Org:
National Science Foundation
More Like this
  1. Frequency-comb-based multidimensional coherent spectroscopy is a powerful optical method for studying nonlinear optical properties of samples with narrow resonances. It enables the measurement of multidimensional coherent spectra rapidly and with high spectral resolution. However, for some samples (especially cold atoms and molecules) the dephasing times are longer than the repetition periods of the excitation lasers and hence the nonlinear signals generated in the sample by the subsequent laser pulses will interfere with each other. Here we investigate this behavior and show its effect on multidimensional coherent spectra by solving the optical Bloch equations. *The material is based upon work supported by the National Science Foundation under Grant No. [1904704] 
    more » « less
  2. The vapor-liquid equilibrium (VLE) of methane + water mixtures has been studied with nuclear magnetic resonance (NMR) spectroscopy. This work had two primary goals. The first goal was to develop methods that broaden the utility of NMR spectroscopy for VLE measurements. In this regard, we report a method by which the liquid-phase and vapor-phase compositions are measured in separate experiments by adjusting the height of the liquid phase in the sample tube. We also report a method for hastening phase equilibration by adding glass beads to the sample and repeatedly inverting the sample tube. The second goal of this work was to collect VLE data on a challenging mixture with real-world importance. Mixtures of methane + water are a useful test case because of their challenging characteristics, including the widely differing vapor pressures of the two components. One use for accurate VLE data on methane + water mixtures is to better predict the formation of harmful liquid phases in natural gas pipelines. Herein we utilize 1H NMR spectroscopy to measure the VLE of methane + water mixtures at temperatures of 299.73, 307.98, and 323.25 K, and pressures ranging from 0.69 MPa to 13.89 MPa. Experiments were carried out with a 600 MHz spectrometer. Mixtures were prepared and equilibrated in a high pressure zirconia sample tube with an integrated needle valve. NMR-based VLE measurements on the liquid phase are in good agreement with available literature data and with Henry’s Law predictions at low pressures. However, the commonly used GERG-2008 model for natural gas systems deviates dramatically from the experimental data for the liquid phase. NMR-based VLE measurements on the vapor-phase resulted in measured water concentrations that are systematically lower than available literature data and models. This systematic offset is likely caused by peak overlap in the NMR spectra. 
    more » « less
  3. Two-dimensional infrared (2DIR) spectroscopy has become an established method for generating vibrational spectra in condensed phase samples composed of mixtures that yield heavily congested infrared and Raman spectra. These condensed phase 2DIR spectrometers can provide very high temporal resolution (<1 ps), but the spectral resolution is generally insufficient for resolving rotational peaks in gas phase spectra. Conventional (1D) rovibrational spectra of gas phase molecules are often plagued by severe spectral congestion, even when the sample is not a mixture. Spectral congestion can obscure the patterns in rovibrational spectra that are needed to assign peaks in the spectra. A method for generating high resolution 2DIR spectra of gas phase molecules has now been developed and tested using methane as the sample. The 2D rovibrational patterns that are recorded resemble an asterisk with a center position that provides the frequencies of both of the two coupled vibrational levels. The ability to generate easily recognizable 2D rovibrational patterns, regardless of temperature, should make the technique useful for a wide range of applications that are otherwise difficult or impossible when using conventional 1D rovibrational spectroscopy.

     
    more » « less
  4. The dielectric properties of materials play a crucial role in the propagation and absorption of microwave beams employed in Magic Angle Spinning − Dynamic Nuclear Polarization (MAS-DNP) NMR experiments. Despite ongoing optimization efforts in sample preparation, routine MAS-DNP NMR applications often fall short of theoretical sensitivity limits. Offering a different perspective, we report the refractive indices and extinction coefficients of diverse materials used in MAS-DNP NMR experiments, spanning a frequency range from 70 to 960 GHz. Knowledge of their dielectric properties enables the accurate simulation of electron nutation frequencies, thereby guiding the design of more efficient hardware and sample preparation of biological or material samples. This is illustrated experimentally for four different rotor materials (sapphire, yttria-stabilized zirconia (YSZ), aluminum nitride (AlN), and SiAlON ceramics) used for DNP at 395 GHz/1H 600 MHz. Finally, electromagnetic simulations and state-of-the-art MAS-DNP numerical simulations provide a rational explanation for the observed magnetic field dependence of the enhancement when using nitroxide biradicals, offering insights that will improve MAS-DNP NMR at high magnetic fields. 
    more » « less
  5. Abstract

    The complex choreography of electronic, vibrational, and vibronic couplings used by photoexcited molecules to transfer energy efficiently is remarkable, but an unambiguous description of the temporally evolving vibronic states governing these processes has proven experimentally elusive. We use multidimensional electronic-vibrational spectroscopy to identify specific time-dependent excited state vibronic couplings involving multiple electronic states, high-frequency vibrations, and low-frequency vibrations which participate in ultrafast intersystem crossing and subsequent relaxation of a photoexcited transition metal complex. We discover an excited state vibronic mechanism driving long-lived charge separation consisting of an initial electronically-localized vibrational wavepacket which triggers delocalization onto two charge transfer states after propagating for ~600 femtoseconds. Electronic delocalization consequently occurs through nonadiabatic internal conversion driven by a 50 cm−1coupling resulting in vibronic coherence transfer lasting for ~1 picosecond. This study showcases the power of multidimensional electronic-vibrational spectroscopy to elucidate complex, non-equilibrium energy and charge transfer mechanisms involving multiple molecular coordinates.

     
    more » « less