skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Meteoric 10Be speciation in subglacial sediments of East Antarctica
A sequential chemical extraction procedure was developed and tested to investigate the utility of meteoric 10Be as a tracer for authigenic mineral formation beneath the East Antarctic Ice Sheet. Subglacial meltwater is widely available under the Antarctic Ice Sheet and dissolved gases within it have the potential to drive chemical weathering processes in the subglacial environment. Meteoric 10Be is a cosmogenic nuclide with a half-life of 1.39⋅10^6 years that is incorporated into glacier ice, therefore its abundance in the subglacial environment in Antarctica is meltwater dependent. It is known to adsorb to fine-grained particles in aqueous solution, precipitate with amorphous oxides/hydroxides, and/or be incorporated into authigenic clay minerals during chemical weathering. The presence of 10Be in chemical weathering products derived from beneath the ice therefore indicates chemical weathering processes in the subglacial environment. Freshly emerging subglacial sediments from the Mt. Achernar blue ice moraine were subject to chemical extractions where these weathering phases were isolated and 10Be concentrations therein quantified. Optimization of the phase isolation was developed by examining the effects of each extraction on the sample mineralogy and chemical composition. Experiments on 10Be desorption revealed that pH 3.2–3.5 was optimal for the extraction of adsorbed 10Be. Vigorous disaggregation of the samples before grain size separations and acid extractions is crucial due to the incorporation of the nuclide in clay minerals and its preferential absorption to clay-sized particles. 10Be concentrations of 2–22⋅10^7 atoms⋅g^ -1 measured in oxides and clay minerals in freshly emerging sediments strongly indicate subglacial chemical weathering in the catchment of the Mt. Achernar moraine. Based on total 10Be sample concentrations, local basal melt rates, and 10Be ice concentrations, sediment-meltwater contact in the subglacial environment is on the order of thousands of years per gram of underlying fine sediment. Strong correlation (R = 0.97) between 10Be and smectite abundance in the sediments supports authigenic clay formation in the subglacial environment. This suggests meteoric 10Be is a useful tool to characterize subglacial geochemical weathering processes under the Antarctic Ice Sheet.  more » « less
Award ID(s):
1744879 2300559
PAR ID:
10470221
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Quaternary Geochronology
Volume:
77
Issue:
C
ISSN:
1871-1014
Page Range / eLocation ID:
101458
Subject(s) / Keyword(s):
Meteoric 10Be Antarctic ice sheet Subglacial processes Chemical weathering Sequential extractions Clays
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Antarctic meltwater is a significant source of iron that fertilizes present-day Southern Ocean ecosystems and may enhance marine carbon burial on geologic timescales. However, it remains uncertain how this nutrient flux changes through time, particularly in response to climate, due to an absence of geologic records detailing trace metal mobilization beneath ice sheets. In this study, we present a 25 kyr record of aqueous trace metal cycling beneath the East Antarctic Ice Sheet measured in a subglacial chemical precipitate that formed across glacial termination III (TIII). The deposition rate and texture of this sample describe a shift in basal meltwater flow following the termination. Alternating layers of opal and calcite deposited in the 10 kyr prior to TIII record centennial-scale subglacial flushing events, whereas reduced basal flushing resulted in slower deposition of a trace metal-rich (Fe, Mn, Mo, Cu) calcite in the 15 kyr after TIII. This sharp increase in calcite metal concentrations following TIII indicates that diminished subglacial meltwater flow restricted the influx of oxygen from basal ice melt to precipitate-forming waters, causing dissolution of redox-sensitive trace metals from the bedrock substrate. These results are consistent with a possible feedback between orbital climate cycles and Antarctic subglacial iron discharge to the Southern Ocean, whereby heightened basal meltwater flow during terminations supplies oxygen to subglacial waters along the ice sheet periphery, which reduces the solubility of redox sensitive elements. As the climate cools, thinner ice and slower ice flow reduce basal meltwater production rates, limiting oxygen delivery and promoting more efficient mobilization of subglacial trace metals. Using a simple model to calculate the concentration of Fe in Antarctic basal water through time, we show that the rate of Antarctic iron discharge to the Southern Ocean is highly sensitive to this heightened mobility, and may therefore, increase significantly during cold climate periods. 
    more » « less
  2. Abstract. Antarctic meltwater is a significant source of iron that fertilizes present-day Southern Ocean ecosystems and may enhance marine carbon burial on geologic timescales. However, it remains uncertain how the nutrient flux from the subglacial system changes through time, particularly in response to climate, due to an absence of geologic records detailing element mobilization beneath ice sheets. In this study, we present a 25 kyr record of aqueous trace metal cycling in subglacial water beneath the David Glacier catchment measured in a subglacial chemical precipitate that formed across glacial termination III (TIII), from 259.5 to 225 ka. The deposition rate and texture of this sample describe a shift in subglacial meltwater flow following the termination. Alternating layers of opal and calcite deposited in the 10 kyr prior to TIII record centennial-scale subglacial flushing events, whereas reduced basal flushing resulted in slower deposition of a trace-metal-rich (Fe, Mn, Mo, Cu) calcite in the 15 kyr after TIII. This sharp increase in calcite metal concentrations following TIII indicates that restricted influx of oxygen from basal ice melt to precipitate-forming waters caused dissolution of redox-sensitive elements from the bedrock substrate. The link between metal concentrations and climate change in this single location across TIII suggests that ice motion may play an important role in subglacial metal mobilization and discharge, whereby heightened basal meltwater flow during terminations supplies oxygen to subglacial waters along the ice sheet periphery, reducing the solubility of redox-sensitive elements. As the climate cools, thinner ice and slower ice flow decrease subglacial meltwater production rates, limiting oxygen delivery and promoting more efficient mobilization of subglacial trace metals. Using a simple model to calculate the concentration of Fe in Antarctic basal water through time, we show that the rate of Antarctic iron discharge to the Southern Ocean is sensitive to this heightened mobility and may therefore increase significantly during cold climate periods. 
    more » « less
  3. Abstract. We used mapping of bedrock lithology, bedrock fractures, and lake density in Inglefield Land, northwestern Greenland, combined with cosmogenic nuclide (10Be and 26Al) measurements in bedrock surfaces, to investigate glacial erosion and the ice sheet history of the northwestern Greenland Ice Sheet. The pattern of eroded versus weathered bedrock surfaces and other glacial erosion indicators reveal temporally and spatially varying erosion under cold- and warm-based ice. All of the bedrock surfaces that we measured in Inglefield Land contain cosmogenic nuclide inheritance with apparent 10Be ages ranging from 24.9 ± 0.5 to 215.8 ± 7.4 ka. The 26Al/10Be ratios require minimum combined surface burial and exposure histories of ∼ 150 to 2000 kyr. Because our sample sites span a relatively small area that experienced a similar ice sheet history, we attribute differences in nuclide concentrations and ratios to varying erosion during the Quaternary. We show that an ice sheet history with ∼ 900 kyr of exposure and ∼ 1800 kyr of ice cover throughout the Quaternary is consistent with the measured nuclide concentrations in most samples when sample-specific subaerial erosion rates are between 0 and 2 × 10−2 mm yr−1 and subglacial erosion rates are between 0 and 2 × 10−3 mm yr−1. These erosion rates help to characterize Arctic landscape evolution in crystalline bedrock terrains in areas away from focused ice flow. 
    more » « less
  4. Abstract. Measurements of multiple cosmogenic nuclides in a single sample are valuable for various applications of cosmogenic nuclide exposure dating and allow for correcting exposure ages for surface weathering and erosion and establishing exposure–burial history. Here we provide advances in the measurement of cosmogenic 10Be in pyroxene and constraints on the production rate that provide new opportunities for measurements of multi-nuclide systems, such as 10Be/3He, in pyroxene-bearing samples. We extracted and measured cosmogenic 10Be in pyroxene from two sets of Ferrar Dolerite samples collected from the Transantarctic Mountains in Antarctica. One set of samples has 10Be concentrations close to saturation, which allows for the production rate calibration of 10Be in pyroxene by assuming production–decay equilibrium. The other set of samples, which has a more recent exposure history, is used to determine if a rapid fusion method can be successfully applied to samples with Holocene to Last Glacial Maximum exposure ages. From measured 10Be concentrations in the near-saturation sample set we find the production rate of 10Be in pyroxene to be 3.74 ± 0.10 atoms g−1 yr−1, which is consistent with 10Be/3He paired nuclide ratios from samples assumed to have simple exposure. Given the high 10Be concentration measured in this sample set, a sample mass of ∼ 0.5 g of pyroxene is sufficient for the extraction of cosmogenic 10Be from pyroxene using a rapid fusion method. However, for the set of samples that have low 10Be concentrations, measured concentrations were higher than expected. We attribute spuriously high 10Be concentrations to failure in removing all meteoric 10Be and/or a highly variable and poorly quantified procedural blank background correction. 
    more » « less
  5. Abstract Oxygen consumption in aquatic sediments is an indicator of overall biological activity of the ecosystem. As such, rates of sedimentary oxygen utilization are well documented for much of the open oceans and freshwater lakes. However, there are few direct measurements of sedimentary oxygen consumption from Antarctic subglacial aquatic sediments. We report the first microsensor oxygen profiles and derived sedimentary oxygen consumption rates from beneath the Ross Ice Shelf and a subglacial lake beneath the West Antarctic Ice Sheet. Rates of oxygen consumption in these two environments are relatively low, but comparable to those reported from ice‐free polar oceans and oligotrophic Arctic lakes. Our study demonstrates the presence of oxygen within Antarctic subglacial aquatic sediments and its importance for oxygen‐consuming microorganisms living in these ecosystems. 
    more » « less