skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Game Data for the Paint Fever game
Game data collected through the "Paint Fever" game generated at the GRIST Lab for NSF Project 1901721  more » « less
Award ID(s):
1901721
PAR ID:
10470306
Author(s) / Creator(s):
Publisher / Repository:
figshare
Date Published:
Subject(s) / Keyword(s):
Serious game experience, game approach
Format(s):
Medium: X Size: 35037184 Bytes
Size(s):
35037184 Bytes
Location:
https://figshare.com/s/ad7b3730c1d21a66ce57
Sponsoring Org:
National Science Foundation
More Like this
  1. Working in a fast-paced environment can lead to shallow breathing, which can exacerbate stress and anxiety. To address this issue, this study aimed to develop micro-interventions that can promote deep breathing in the presence of stressors. First, we examined two types of breathing guides to help individuals learn deep breathing: providing their breathing rate as a biofeedback signal, and providing a pacing signal to which they can synchronize their breathing. Second, we examined the extent to which these two breathing guides can be integrated into a casual game, to increase enjoyment and skill transfer. We used a 2 × 2 factorial design, with breathing guide (biofeedback vs. pacing) and gaming (game vs. no game) as independent factors. This led to four experimental groups: biofeedback alone, biofeedback integrated into a game, pacing alone, and pacing integrated into a game. In a first experiment, we evaluated the four experimental treatments in a laboratory setting, where 30 healthy participants completed a stressful task before and after performing one of the four treatments (or a control condition) while wearing a chest strap that measured their breathing rate. Two-way ANOVA of breathing rates, with treatment (5 groups) and time (pre-test, post-test) as independent factors shows a significant effect for time [ F (4, 50) = 18.49, p < 0.001, η t i m e 2 = 0 . 27 ] and treatment [ F (4, 50) = 2.54, p = 0.05, η 2 = 0.17], but no interaction effects. Post-hoc t-tests between pre and post-test breathing rates shows statistical significance for the game with biofeedback group [ t (5) = 5.94, p = 0.001, d = 2.68], but not for the other four groups, indicating that only game with biofeedback led to skill transfer at post-test. Further, two-way ANOVA of self-reported enjoyment scores on the four experimental treatments, with breathing guide and game as independent factors, found a main effect for game [ F ( 1 , 20 ) = 24 . 49 , p < 0 . 001 ,   η g a m e 2 = 0 . 55 ], indicating that the game-based interventions were more enjoyable than the non-game interventions. In a second experiment, conducted in an ambulatory setting, 36 healthy participants practiced one of the four experimental treatments as they saw fit over the course of a day. We found that the game-based interventions were practiced more often than the non-game interventions [ t (34) = 1.99, p = 0.027, d = 0.67]. However, we also found that participants in the game-based interventions could only achieve deep breathing 50% of the times, whereas participants in the non-game groups succeeded 85% of the times, which indicated that the former need adequate training time to be effective. Finally, participant feedback indicated that the non-game interventions were better at promoting in-the-moment relaxation, whereas the game-based interventions were more successful at promoting deep breathing during stressful tasks. 
    more » « less
  2. Game system models introduce abstractions over games in order to support their analysis, generation, and design. While excellent, models to date leave tacit what they abstract over, why they are ontologically adequate, and how they would be realized in the engine underlying the game. In this paper we model these abstraction gaps via the first-order modal mu-calculus. We use it to reify the link between engines to our game interaction model, a player-computer interaction framework grounded in the Game Ontology Project. Through formal derivation and justification, we contend our work is a useful code studies perspective that affords better understanding the semantics underlying game system models in general. 
    more » « less
  3. Motivated by non-local games and quantum coloring problems, we introduce a graph homomorphism game between quantum graphs and classical graphs. This game is naturally cast as a “quantum–classical game,” that is, a non-local game of two players involving quantum questions and classical answers. This game generalizes the graph homomorphism game between classical graphs. We show that winning strategies in the various quantum models for the game is an analog of the notion of non-commutative graph homomorphisms due to Stahlke [IEEE Trans. Inf. Theory 62(1), 554–577 (2016)]. Moreover, we present a game algebra in this context that generalizes the game algebra for graph homomorphisms given by Helton et al. [New York J. Math. 25, 328–361 (2019)]. We also demonstrate explicit quantum colorings of all quantum complete graphs, yielding the surprising fact that the algebra of the four coloring game for a quantum graph is always non-trivial, extending a result of Helton et al. [New York J. Math. 25, 328–361 (2019)]. 
    more » « less
  4. Game-based learning (GBL) has increasingly been used to promote students’ learning engagement. Although prior GBL studies have highlighted the significance of learning engagement as a mediator of students’ meaningful learning, the existing accounts failed to capture specific evidence of how exactly students’ in-game actions in GBL enhance learning engagement. Hence, this mixed-method study was designed to examine whether middle school students’ in-game actions are likely to promote certain types of learning engagement (i.e., content and cognitive engagement). This study used and examined the game E-Rebuild, a single-player three-dimensional architecture game that requires learners’ application of math knowledge. Using in-depth gameplay behavior analysis, this study sampled a total of 92 screen-recorded and video-captured gameplay sessions attended by 25 middle school students. We adopted two analytic approaches: sequential analysis and thematic analysis. Whereas sequential analysis explored which in-game actions by students were likely to promote each type of learning engagement, the thematic analysis depicted how certain gameplay contexts contributed to students’ enhanced learning engagement. The study found that refugee allocation and material trading actions promoted students’ content engagement, whereas using in-game building tools and learning support boosted their cognitive engagement. This study also found that students’ learning engagement was associated with their development of mathematical thinking in a GBL context. 
    more » « less
  5. As video games and esports continue to grow in popularity, gaming injuries are also on the rise. In recent years, medical professionals have placed greater emphasis on preventing and treating gaming injuries and proposed specific gaming health guidelines. However, the game industry and game research community have not done enough to address the hazards of gaming injuries or raise awareness about such hazards to players, parents, and game designers. In this paper, we propose a framework of injury-aware game design that addresses the two main causes of gaming injuries: prolonged gaming and repetitive microtrauma. We have identified a set of injury-aware game design techniques to help raise awareness of gaming-related hazards, promote healthy gaming behavior, and optimize gameplay to prevent injuries. We believe an effective way to deliver gaming-related health information to game players is through games themselves. To demonstrate this framework, we have developed an injury-aware game and conducted a user study with players and game designers. The results from the proof-of-concept game and user study show that both players and designers have a positive reception to the idea of implementing more inclusive measures into games, with nearly all participants of the user study being interested in the idea of hand exercise recommendations. 
    more » « less