skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: On the Constructor–Blocker game
Abstract In the Constructor–Blocker game, two players, Constructor and Blocker, alternately claim unclaimed edges of the complete graph . For given graphs and , Constructor can only claim edges that leave her graph ‐free, while Blocker has no restrictions. Constructor's goal is to build as many copies of as she can, while Blocker attempts to minimize the number of copies of in Constructor's graph. The game ends once there are no more edges that Constructor can claim. The score of the game is the number of copies of in Constructor's graph at the end of the game when both players play optimally and Constructor plays first. In this paper, we extend results of Patkós, Stojaković and Vizer on to many pairs of and : We determine when and , also when both and are odd cycles, using Szemerédi's Regularity Lemma. We also obtain bounds of when and .  more » « less
Award ID(s):
2152488
PAR ID:
10596998
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Graph Theory
Volume:
108
Issue:
3
ISSN:
0364-9024
Page Range / eLocation ID:
492 to 507
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a graph Ramsey game called Ramsey, Paper, Scissors. This game has two players, Proposer and Decider. Starting from an empty graph onnvertices, on each turn Proposer proposes a potential edge and Decider simultaneously decides (without knowing Proposer's choice) whether to add it to the graph. Proposer cannot propose an edge which would create a triangle in the graph. The game ends when Proposer has no legal moves remaining, and Proposer wins if the final graph has independence number at leasts. We prove a threshold phenomenon exists for this game by exhibiting randomized strategies for both players that are optimal up to constants. Namely, there exist constants 0 < A < Bsuch that (under optimal play) Proposer wins with high probability if, while Decider wins with high probability if. This is a factor oflarger than the lower bound coming from the off‐diagonal Ramsey numberr(3,s). 
    more » « less
  2. We release FOOLMETWICE (FM2 for short), a large dataset of challenging entailment pairs collected through a fun multi-player game. Gamification encourages adversarial examples, drastically lowering the number of examples that can be solved using “shortcuts” compared to other entailment datasets. Players are presented with two tasks. The first task asks the player to write a plausible claim based on the evidence from a Wikipedia page. The second one shows two plausible claims written by other players, one of which is false, and the goal is to identify it before the time runs out. Players “pay” to see clues retrieved from the evidence pool: the more evidence the player needs, the harder the claim. Game-play between motivated players leads to diverse strategies for crafting claims, such as temporal inference and diverting to unrelated evidence, and results in higher quality data for the entailment and evidence retrieval tasks. We open source the dataset and game code. 
    more » « less
  3. Francisco Ruiz, Jennifer Dy (Ed.)
    We study the sample complexity of identifying an approximate equilibrium for two-player zero-sum n × 2 matrix games. That is, in a sequence of repeated game plays, how many rounds must the two players play before reaching an approximate equilibrium (e.g., Nash)? We derive instance-dependent bounds that define an ordering over game matrices that captures the intuition that the dynamics of some games converge faster than others. Specifically, we consider a stochastic observation model such that when the two players choose actions i and j, respectively, they both observe each other’s played actions and a stochastic observation Xij such that E [Xij ] = Aij . To our knowledge, our work is the first case of instance-dependent lower bounds on the number of rounds the players must play before reaching an approximate equilibrium in the sense that the number of rounds depends on the specific properties of the game matrix A as well as the desired accuracy. We also prove a converse statement: there exist player strategies that achieve this lower bound. 
    more » « less
  4. Abstract Recent developments of eco-evolutionary models have shown that evolving feedbacks between behavioral strategies and the environment of game interactions, leading to changes in the underlying payoff matrix, can impact the underlying population dynamics in various manners. We propose and analyze an eco-evolutionary game dynamics model on a network with two communities such that players interact with other players in the same community and those in the opposite community at different rates. In our model, we consider two-person matrix games with pairwise interactions occurring on individual edges and assume that the environmental state depends on edges rather than on nodes or being globally shared in the population. We analytically determine the equilibria and their stability under a symmetric population structure assumption, and we also numerically study the replicator dynamics of the general model. The model shows rich dynamical behavior, such as multiple transcritical bifurcations, multistability, and anti-synchronous oscillations. Our work offers insights into understanding how the presence of community structure impacts the eco-evolutionary dynamics within and between niches. 
    more » « less
  5. In a recent breakthrough, Kelley and Meka (FOCS 2023) obtained a strong upper bound on the density of sets of integers without non-trivial three-term arithmetic progressions. In this work, we extend their result, establishing similar bounds for all linear patterns defined by binary systems of linear forms, where “binary” indicates that every linear form depends on exactly two variables. Prior to our work, no strong bounds were known for such systems even in the finite field model setting. A key ingredient in our proof is a graph counting lemma. The classical graph counting lemma, developed by Thomason (Random Graphs 1985) and Chung, Graham, and Wilson (Combinatorica 1989), is a fundamental tool in combinatorics. For a fixed graph H, it states that the number of copies of H in a pseudorandom graph G is similar to the number of copies of H in a purely random graph with the same edge density as G. However, this lemma is only non-trivial when G is a dense graph. In this work, we prove a graph counting lemma that is also effective when G is sparse. Moreover, our lemma is well-suited for density increment arguments in additive number theory. As an immediate application, we obtain a strong bound for the Turán problem in abelian Cayley sum graphs: let Γ be a finite abelian group with odd order. If a Cayley sum graph on Γ does not contain any r-elique as a sub graph, it must have at most 2−Ωr(log1/16|Γ|)⋅|Γ|2 edges. These results hinge on the technology developed by Kelley and Meka and the follow-up work by Kelley, Lovett, and Meka (STOC 2024). 
    more » « less