skip to main content


Title: Behavior and Bioadhesives: How Bolas Spiders, Mastophora hutchinsoni, Catch Moths

Spiders use various combinations of silks, adhesives, and behaviors to ensnare and trap prey. A common but difficult to catch prey in most spider habitats are moths. They easily escape typical orb-webs because their bodies are covered in sacrificial scales that flake off when in contact with the web’s adhesives. This defense is defeated by spiders of the sub-family of Cyrtarachninae, moth-catching specialists who combine changes in orb-web structure, predatory behavior, and chemistry of the aggregate glue placed in those webs. The most extreme changes in web structure are shown by bolas spiders, who create a solitary capture strand containing only one or two glue droplets at the end of a single thread. They prey on male moths by releasing pheromones to draw them within range of their bolas, which they flick to ensnare the moth. We used a high-speed video camera to capture the behavior of the bolas spider Mastophora hutchinsoni. We calculated the kinematics of spiders and moths in the wild to model the physical and mechanical properties of the bolas during prey capture, the behavior of the moth, and how these factors lead to successful prey capture. We created a numerical model to explain the mechanical behavior of the bolas silk during prey capture. Our kinematic analysis shows that the material properties of the aggregate glue bolas of M. hutchinsoni are distinct from that of the other previously analyzed moth-specialist, Cyrtarachne akirai. The spring-like behavior of the M. hutchinsoni bolas suggests it spins a thicker liquid.

 
more » « less
Award ID(s):
2031962
NSF-PAR ID:
10470321
Author(s) / Creator(s):
;
Publisher / Repository:
Insects
Date Published:
Journal Name:
Insects
Volume:
13
Issue:
12
ISSN:
2075-4450
Page Range / eLocation ID:
1166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spiders use various combinations of silks, adhesives, and behaviors to ensnare prey. One common but difficult-to-catch prey is moths. They easily escape typical orb-webs because their bodies are covered in tiny sacrificial scales that flake off when in contact with the web’s adhesives. This defense is defeated by spiders of the sub-family of Cyrtarachninae—moth-catching specialists who combine changes in orb-web structure, predatory behavior, and chemistry of the aggregate glue placed in those webs. The most extreme changes in web structure are shown by the bolas spiders which create only one or two glue droplets at the end of a single thread. They prey on male moths by releasing pheromones to draw them close. Here, we confirm the hypothesis that the spinning behavior of the spider is directly used to spin its glue droplets using a high-speed video camera to observe the captured behavior of the bolas spider Cladomelea akermani as it actively spins its body and bolas. We use the kinematics of the spider and bolas to begin to quantify and model the physical and mechanical properties of the bolas during prey capture. We then examine why this species chooses to spin its body, an energetically costly behavior, during prey capture. We test the hypothesis that spinning helps to spread pheromones by creating a computational fluid dynamics model of airflow within an open field and comparing it to that of airflow within a tree, a common environment for bolas spiders that do not spin. Spinning in an open environment creates turbulent air, spreading pheromones further and creating a pocket of pheromones. Conversely, spinning within a tree does little to affect the natural airflow.

     
    more » « less
  2. ABSTRACT Morphological structures and extended phenotypes are made possible by materials that are encoded by the genome. Nearly all biomaterials are viscoelastic, which means that to understand performance, one must understand the strain rate-dependent properties of these materials in relevant ecological interactions, as the behavior of a material can vary dramatically and rapidly. Spider silks are an example of materials whose properties vary substantially intra- and inter-specifically. Here, we focus on aggregate silk, which functions as a biological adhesive. As a case study to understand how a material manifests from genome through organism to ecology, we highlight moth-specialist spiders, the Cyrtarachninae, and their glues as an ideal experimental system to investigate the relationship between genomics and ecologically variable performance of a biological material. There is a clear eco-evolutionary innovation that Cyrtarachne akirai and related species have evolved, a unique trait not found in other spiders, a glue which overcomes the scales of moths. By examining traditional orb-weavers, C. akirai and other subfamily members using biomechanical testing and genomic analysis, we argue that we can track the evolution of this novel bioadhesive and comment on the selection pressures influencing prey specialization. The importance of the ecological context of materials testing is exemplified by the poor performance of C. akirai glue on glass and the exceptional spreading ability and adhesive strength on moths. The genetic basis for these performance properties is experimentally tractable because spider silk genes are minimally pleiotropic and advances in genomic technologies now make possible the discovery of complete silk gene sequences. 
    more » « less
  3. Morphological structures and extended phenotypes are made possible by materials that are encoded by the genome. Nearly all biomaterials are viscoelastic, which means that to understand performance, one must understand the strain rate-dependent properties of these materials in relevant ecological interactions, as the behavior of a material can vary dramatically and rapidly. Spider silks are an example of materials whose properties vary substantially intra- and inter-specifically. Here, we focus on aggregate silk, which functions as a biological adhesive. As a case study to understand how a material manifests from genome through organism to ecology, we highlight moth-specialist spiders, the Cyrtarachninae, and their glues as an ideal experimental system to investigate the relationship between genomics and ecologically variable performance of a biological material. There is a clear eco-evolutionary innovation that Cyrtarachne akirai and related species have evolved, a unique trait not found in other spiders, a glue which overcomes the scales of moths. By examining traditional orb-weavers, C. akirai and other subfamily members using biomechanical testing and genomic analysis, we argue that we can track the evolution of this novel bioadhesive and comment on the selection pressures influencing prey specialization. The importance of the ecological context of materials testing is exemplified by the poor performance of C. akirai glue on glass and the exceptional spreading ability and adhesive strength on moths. The genetic basis for these performance properties is experimentally tractable because spider silk genes are minimally pleiotropic and advances in genomic technologies now make possible the discovery of complete silk gene sequences. 
    more » « less
  4. null (Ed.)
    Abstract The origin of aggregate silk glands and their production of wet adhesive silks is considered a key innovation of the Araneoidea, a superfamily of spiders that build orb-webs and cobwebs. Orb-web weavers place aggregate glue on an extensible capture spiral, whereas cobweb weavers add it to the ends of strong, stiff fibers, called gumfoot lines. Here we describe the material behavior and quantitative proteomics of the aggregate glues of two cobweb weaving species, the Western black widow, Latrodectus hesperus, and the common house spider, Parasteatoda tepidariorum. For each species respectively, we identified 48 and 33 proteins that were significantly more abundant in the portion of the gumfoot line with glue than in its fibers. These proteins were more highly glycosylated and phosphorylated than proteins found in silk fibers without glue, which likely explains aggregate glue stickiness. Most glue-enriched proteins were of anterior aggregate gland origin, supporting the hypothesis that cobweb weavers’ posterior aggregate glue is specialized for another function. We found that cobweb weaver glue droplets are stiffer and tougher than the adhesive of most orb-web weaving species. Attributes of gumfoot glue protein composition that likely contribute to this stiffness include the presence of multiple protein families with conserved cysteine residues, a bimodal distribution of isoelectric points, and families with conserved functions in protein aggregation, all of which should contribute to cohesive protein-protein interactions. House spider aggregate droplets were more responsive to humidity changes than black widow droplets, which could be mediated by differences in protein sequence, post-translational modifications, the non-protein components of the glue droplets, and/or the larger amount of aqueous material that surrounds the adhesive cores of their glue droplets. 
    more » « less
  5. Webs play many essential roles in spider biology, including communication, prey capture, locomotion, and reproduction. One interesting morphological feature of many spiders is the cribellum, a plate located near the silk-producing structures called spinnerets, and used to create a special type of matted silk that captures prey mechanically, instead of with glue droplets used by many orb-weaving spiders. The cribellum is hypothesized to have been present in the ancestor of all araneomorph spiders, but lost multiple times over the course of spider evolution. One group of spiders, the ‘marronoids’, shows a pattern of repeated loss and gain of this structure, placing them at a transitional position in the evolution of spider webs, with further implications for the web capture strategy, and other ecological conditions such as water-associated habitat. Studying the timing of the loss of the cribellum may yield insight to the cryptic ecology and morphology of the marranoid clade, and more broadly, araneomorph spiders. We use comparative phylogenetic methods to identify ancestral states of morphological and behavioral characters, and examine divergence dates with fossil calibrations. To do this, 98 representative spiders from the marronoid clade were coded by zoogeographic region, distribution proximity to a body of water and type, web type, and observed aquatic behavior. The morphology of the cribellum and spinnerets was assessed using 42 characters with multiple states. We identified patterns of evolution of the cribellum and aquatic habitat associations in the context of phylogeny, and geologic time. 
    more » « less