Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Orb-weaver spiders produce upwards of seven different types of silk, each with unique material properties. We focus on the adhesive within orb-weaving spider webs, aggregate glue silk. These droplets are composed of three main components: water, glycoproteins, and a wide range of low molecular mass compounds (LMMCs). These LMMCs are known to play a crucial role in maintaining the material properties of the glycoproteins, aid in water absorption from the environment, and increase surface adhesion. Orb-weavers within the Cyrtarachninae subfamily are moth specialists and have evolved glue droplets with novel material properties. This study investigated the biochemical composition and diversity of the LMMCs present in the aggregate glue of eight moth-specialist species and compared them with five generalist orb-weavers using nuclear magnetic resonance (NMR) spectroscopy. We hypothesized that the novel drying ability of moth-specialist glue was accompanied by novel LMMCs and lower overall percentages by silk weight of LMMCs. We measured no difference in LMMC weight by the type of prey specialization, but observed novel compositions in the glue of all eight moth-catching species. Further, we quantified the presence of a previously reported but unidentified compound that appears in the glue of all moth specialists. These silks can provide insight into the functions of bioadhesives and inform our own synthetic adhesives.more » « less
-
Spiders use various combinations of silks, adhesives, and behaviors to ensnare and trap prey. A common but difficult to catch prey in most spider habitats are moths. They easily escape typical orb-webs because their bodies are covered in sacrificial scales that flake off when in contact with the web’s adhesives. This defense is defeated by spiders of the sub-family of Cyrtarachninae, moth-catching specialists who combine changes in orb-web structure, predatory behavior, and chemistry of the aggregate glue placed in those webs. The most extreme changes in web structure are shown by bolas spiders, who create a solitary capture strand containing only one or two glue droplets at the end of a single thread. They prey on male moths by releasing pheromones to draw them within range of their bolas, which they flick to ensnare the moth. We used a high-speed video camera to capture the behavior of the bolas spider Mastophora hutchinsoni. We calculated the kinematics of spiders and moths in the wild to model the physical and mechanical properties of the bolas during prey capture, the behavior of the moth, and how these factors lead to successful prey capture. We created a numerical model to explain the mechanical behavior of the bolas silk during prey capture. Our kinematic analysis shows that the material properties of the aggregate glue bolas of M. hutchinsoni are distinct from that of the other previously analyzed moth-specialist, Cyrtarachne akirai. The spring-like behavior of the M. hutchinsoni bolas suggests it spins a thicker liquid.more » « less
-
Spiders use various combinations of silks, adhesives, and behaviors to ensnare prey. One common but difficult-to-catch prey is moths. They easily escape typical orb-webs because their bodies are covered in tiny sacrificial scales that flake off when in contact with the web’s adhesives. This defense is defeated by spiders of the sub-family of Cyrtarachninae—moth-catching specialists who combine changes in orb-web structure, predatory behavior, and chemistry of the aggregate glue placed in those webs. The most extreme changes in web structure are shown by the bolas spiders which create only one or two glue droplets at the end of a single thread. They prey on male moths by releasing pheromones to draw them close. Here, we confirm the hypothesis that the spinning behavior of the spider is directly used to spin its glue droplets using a high-speed video camera to observe the captured behavior of the bolas spider Cladomelea akermani as it actively spins its body and bolas. We use the kinematics of the spider and bolas to begin to quantify and model the physical and mechanical properties of the bolas during prey capture. We then examine why this species chooses to spin its body, an energetically costly behavior, during prey capture. We test the hypothesis that spinning helps to spread pheromones by creating a computational fluid dynamics model of airflow within an open field and comparing it to that of airflow within a tree, a common environment for bolas spiders that do not spin. Spinning in an open environment creates turbulent air, spreading pheromones further and creating a pocket of pheromones. Conversely, spinning within a tree does little to affect the natural airflow.more » « less
-
Morphological structures and extended phenotypes are made possible by materials that are encoded by the genome. Nearly all biomaterials are viscoelastic, which means that to understand performance, one must understand the strain rate-dependent properties of these materials in relevant ecological interactions, as the behavior of a material can vary dramatically and rapidly. Spider silks are an example of materials whose properties vary substantially intra- and inter-specifically. Here, we focus on aggregate silk, which functions as a biological adhesive. As a case study to understand how a material manifests from genome through organism to ecology, we highlight moth-specialist spiders, the Cyrtarachninae, and their glues as an ideal experimental system to investigate the relationship between genomics and ecologically variable performance of a biological material. There is a clear eco-evolutionary innovation that Cyrtarachne akirai and related species have evolved, a unique trait not found in other spiders, a glue which overcomes the scales of moths. By examining traditional orb-weavers, C. akirai and other subfamily members using biomechanical testing and genomic analysis, we argue that we can track the evolution of this novel bioadhesive and comment on the selection pressures influencing prey specialization. The importance of the ecological context of materials testing is exemplified by the poor performance of C. akirai glue on glass and the exceptional spreading ability and adhesive strength on moths. The genetic basis for these performance properties is experimentally tractable because spider silk genes are minimally pleiotropic and advances in genomic technologies now make possible the discovery of complete silk gene sequences.more » « less
An official website of the United States government
