skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatio‐Temporal Variations in Sediment Delivery as a Response to Rapid Quaternary Climate Change in the Lake Malawi Rift, East Africa
Abstract The interplay of rapid climate change and tectonics drives landscape development, sediment routing, and deposition in early‐stage continental rift systems. The Lake Malawi Rift, in the Western Branch of the East African Rift, is an archetype of a juvenile rift and an ideal natural laboratory for evaluating lacustrine source‐to‐sink systems on orbital or shorter timescales. We examine the interplay of these processes over the past 140 kyr using observations from nested seismic reflection data sets tied to scientific drill cores, which calibrate numerical forward models of this closed sedimentary system. Fault slip rates measured from seismic data drive tectonic displacements in the model. Satellite‐derived precipitation maps constrain modern precipitation and are scaled to previous hydrologic balance studies to reconstruct past climates. Our model reproduces known sediment thicknesses across the rift and accounts for 96% of the estimated siliciclastic sediment deposited over the past 140 kyr. The results demonstrate that the onset of arid climate conditions (140–95 kyr BP) causes extreme drainage adjustments downstream and the formation of mega‐catchments that flow axially into a shallow restricted paleo‐lake. Sedimentation rates during this time are twice the present values due to increased sediment focusing via these axial systems into a much smaller, hydrologically closed lake. As the climate became wetter (95–50 kyr BP), the lake rapidly expanded, decreasing both erosion and sedimentation rates across the rift. This closed‐loop approach allows us to evaluate the role of high‐frequency climate change in modulating basin physiography as well as sediment fluxes in juvenile rift systems.  more » « less
Award ID(s):
2116017
PAR ID:
10470388
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
128
Issue:
10
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The climate of the southwestern North America has experienced profound changes between wet and dry phases over the past 200 Kyr. To better constrain the timing, magnitude, and paleoenvironmental impacts of these changes in hydroclimate, we conducted a multiproxy biomarker study from samples collected from a new 77 m sediment core (SLAPP‐SRLS17) drilled in Searles Lake, California. Here, we use biomarkers and pollen to reconstruct vegetation, lake conditions, and climate. We find that δD values of long chainn‐alkanes are dominated by glacial to interglacial changes that match nearby Devils Hole calcite δ18O variability, suggesting both archives predominantly reflect precipitation isotopes. However, precipitation isotopes do not simply covary with evidence for wet‐dry changes in vegetation and lake conditions, indicating a partial disconnect between large scale atmospheric circulation tracked by precipitation isotopes and landscape moisture availability. Increased crenarchaeol production and decreased evidence for methane cycling reveal a 10 Kyr interval of a fresh, productive, and well‐mixed lake during Termination II, corroborating evidence for a paleolake highstand from shorelines and spillover deposits in downstream Panamint Basin and Death Valley during the end of the penultimate (Tahoe) glacial (140–130 ka). At the same time brGDGTs yield the lowest temperature estimates (mean months above freezing = 9°C ± 3°C) of the 200 Kyr record. These limnological conditions are not replicated elsewhere in the 200 Kyr record, suggesting that the Heinrich stadial 11 highstand was wetter than the last glacial maximum and Heinrich 1 (18–15 ka). 
    more » « less
  2. Abstract We employed the modern analog technique to quantitatively reconstruct temperature and precipitation over the past 2500 yr based on fossil pollen records from six high-elevation lakes in northern Colorado. Reconstructed annual temperatures for the study area did not deviate significantly from modern over the past 2500 yr despite hemispheric expressions of Medieval Climate Anomaly warmth and Little Ice Age cooling. Annual precipitation, however, shifted from lower than modern rates from 2500 to 1000 cal yr BP to higher than modern rates after 1000 cal yr BP, a greater than 100 mm increase in precipitation. Winter precipitation accounts for the majority of the change in annual precipitation, while summer precipitation rates did not change significantly over the past 2500 yr. The large change in winter precipitation rates from the first to second millennium of the Common Era is inferred from a shift in fossil pollen assemblages dominated by subalpine conifers, which have southern sites as modern analogs, to assemblages representing open subalpine vegetation with abundant Artemisia spp. (sagebrush), which have more northern modern analogs. The change helps to explain regional increases in lake levels and shifts in some isotopic and tree-ring data sets, highlighting the risk of large reductions in snowpack and water supplies in the Intermountain West. 
    more » « less
  3. Abstract. Annually laminated lake sediment can track paleoenvironmental change at high resolution where alternative archives are often not available. However,information about the chronology is often affected by indistinct and intermittent laminations. Traditional chronology building struggles with thesekinds of laminations, typically failing to adequately estimate uncertainty or discarding the information recorded in the laminations entirely,despite their potential to improve chronologies. We present an approach that overcomes the challenge of indistinct or intermediate laminations andother obstacles by using a quantitative lamination quality index combined with a multi-core, multi-observer Bayesian lamination sedimentation modelthat quantifies realistic under- and over-counting uncertainties while integrating information from radiometric measurements (210Pb,137Cs, and 14C) into the chronology. We demonstrate this approach on sediment of indistinct and intermittently laminatedsequences from alpine Columbine Lake, Colorado. The integrated model indicates 3137 (95 % highest probability density range: 2753–3375) varveyears with a cumulative posterior distribution of counting uncertainties of −13 % to +7 %, indicative of systematic observerunder-counting. Our novel approach provides a realistic constraint on sedimentation rates and quantifies uncertainty in the varve chronology byquantifying over- and under-counting uncertainties related to observer bias as well as the quality and variability of the sediment appearance. The approachpermits the construction of a chronology and sedimentation rates for sites with intermittent or indistinct laminations, which are likely moreprevalent than sequences with distinct laminations, especially when considering non-lacustrine sequences, and thus expands the possibilities ofreconstructing past environmental change with high resolution. 
    more » « less
  4. The magnitude of change in climatic conditions and vegetation response to the last deglaciation in various parts of tropical Amazonia is poorly understood and controversial. Analysis of a sediment core e.g. fossil pollen, X-ray Fluorescence (XRF) and charcoal from Lake Malachite on the Hill of Six Lakes in northwestern Brazil provided a deglacial history of climate, vegetation change and fire. Pollen revealed a forested landscape throughout, with shifts in composition that were driven by warming and changes in precipitation. The glacial cooling of c. 4–5 !C had brought species characteristic of cooler climates into the Amazon lowlands and was followed by an initial warming that began at least 19.5 thousand calibrated years before the present (cal kyr BP). Temperature oscillations and changes in precipitation between (18–14.6 cal kyr BP) associated with Heinrich Stadial 1 were observed as wet-dry-wet oscillations similar to some of the previous studies, and were evident in both pollen and XRF data. The pollen spectra were consistent that of a mesic forest before and after the peak of the Last Glacial Maximum. Cool-adapted taxa had previously been described from other cores from the Hill of Six Lakes, and persisted in low abundances until c. 14.1 cal kyr BP. No distinct response to the Atlantic Cold Reversal was evident in our proxy data. The early Holocene was marked by pollen, charcoal, and sedimentary changes that could reflect a peak drought stress on the forest. The large occurrence of charcoal indicating an increase in fires coincided with disturbance elements e.g. Cecropia and Alchornea, that could have been consistent with human disturbance of the forest at c. 10.2 cal kyr BP. 
    more » « less
  5. Abstract Soil erosion and sedimentation problems remain a major water quality concern for making watershed management policies in the Mississippi River Basin (MRB). It is unclear whether the observed decreasing trend of stream suspended sediment loading to the mouth of the MRB over the last eight decades truly reflects a decline in upland soil erosion in this large basin. Here, we improved a distributed regional land surface model, the Dynamic Land Ecosystem Model, to evaluate how climate and land use changes have impacted soil erosion and sediment yield over the entire MRB during the past century. Model results indicate that total sediment yield significantly increased during 1980–2018, despite no significant increase in annual precipitation and runoff. The increased soil erosion and sediment yield are mainly driven by intensified extreme precipitation (EP). Spatially, we found notable intensified EP events in the cropland‐dominated Midwest region, resulting in a substantial increase in soil erosion and sediment yield. Land use change played a critical role in determining sediment yield from the 1910s to the 1930s, thereafter, climate variability increasingly became the dominant driver of soil erosion, which peaked in the 2010s. This study highlights the increasing influences of extreme climate in affecting soil erosion and sedimentation, thus, water quality. Therefore, existing forest and cropland Best Management Practices should be revisited to confront the impacts of climate change on water quality in the MRB. 
    more » « less