skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: No Privacy Among Spies: Assessing the Functionality and Insecurity of Consumer Android Spyware Apps
Consumer mobile spyware apps covertly monitor a user's activities (i.e., text messages, phone calls, e-mail, location, etc.) and transmit that information over the Internet to support remote surveillance. Unlike conceptually similar apps used for state espionage, so-called stalkerware apps are mass-marketed to consumers on a retail basis and expose a far broader range of victims to invasive monitoring. Today the market for such apps is large enough to support dozens of competitors, with individual vendors reportedly monitoring hundreds of thousands of phones. However, while the research community is well aware of the existence of such apps, our understanding of the mechanisms they use to operate remains ad hoc. In this work, we perform an in-depth technical analysis of 14 distinct leading mobile spyware apps targeting Android phones. We document the range of mechanisms used to monitor user activity of various kinds (e.g., photos, text messages, live microphone access) — primarily through the creative abuse of Android APIs. We also discover previously undocumented methods these apps use to hide from detection and to achieve persistence. Additionally, we document the measures taken by each app to protect the privacy of the sensitive data they collect, identifying a range of failings on the part of spyware vendors (including privacy-sensitive data sent in the clear or stored in the cloud with little or no protection).  more » « less
Award ID(s):
1916126
PAR ID:
10470414
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings on Privacy Enhancing Technologies
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2023
Issue:
1
ISSN:
2299-0984
Page Range / eLocation ID:
207 to 224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Smartphone location sharing is a particularly sensitive type of information disclosure that has implications for users’ digital privacy and security as well as their physical safety. To understand and predict location disclosure behavior, we developed an Android app that scraped metadata from users’ phones, asked them to grant the location-sharing permission to the app, and administered a survey. We compared the effectiveness of using self-report measures commonly used in the social sciences, behavioral data collected from users’ mobile phones, and a new type of measure that we developed, representing a hybrid of self-report and behavioral data to contextualize users’ attitudes toward their past location-sharing behaviors. This new type of measure is based on a reflective learning paradigm where individuals reflect on past behavior to inform future behavior. Based on data from 380 Android smartphone users, we found that the best predictors of whether participants granted the location-sharing permission to our app were: behavioral intention to share information with apps, the “FYI” communication style, and one of our new hybrid measures asking users whether they were comfortable sharing location with apps currently installed on their smartphones. Our novel, hybrid construct of self-reflection on past behavior significantly improves predictive power and shows the importance of combining social science and computational science approaches for improving the prediction of users’ privacy behaviors. Further, when assessing the construct validity of the Behavioral Intention construct drawn from previous location-sharing research, our data showed a clear distinction between two different types of Behavioral Intention: self-reported intention to use mobile apps versus the intention to share information with these apps. This finding suggests that users desire the ability to use mobile apps without being required to share sensitive information, such as their location. These results have important implications for cybersecurity research and system design to meet users’ location-sharing privacy needs. 
    more » « less
  2. The transparency and privacy behavior of mobile browsers has remained widely unexplored by the research community. In fact, as opposed to regular Android apps, mobile browsers may present contradicting privacy behaviors. On the one end, they can have access to (and can expose) a unique combination of sensitive user data, from users’ browsing history to permission-protected personally identifiable information (PII) such as unique identifiers and geolocation. However, on the other end, they also are in a unique position to protect users’ privacy by limiting data sharing with other parties by implementing ad-blocking features. In this paper, we perform a comparative and empirical analysis on how hundreds of Android web browsers protect or expose user data during browsing sessions. To this end, we collect the largest dataset of Android browsers to date, from the Google Play Store and four Chinese app stores. Then, we developed a novel analysis pipeline that combines static and dynamic analysis methods to find a wide range of privacy-enhancing (e.g., ad-blocking) and privacy-harming behaviors (e.g., sending browsing histories to third parties, not validating TLS certificates, and exposing PII---including non-resettable identifiers---to third parties) across browsers. We find that various popular apps on both Google Play and Chinese stores have these privacy-harming behaviors, including apps that claim to be privacy-enhancing in their descriptions. Overall, our study not only provides new insights into important yet overlooked considerations for browsers’ adoption and transparency, but also that automatic app analysis systems (e.g., sandboxes) need context-specific analysis to reveal such privacy behaviors. 
    more » « less
  3. Android devices, handling sensitive data like call records and text messages, are prone to privacy breaches. Existing information flow tracking systems face difficulties in detecting these breaches due to two main challenges: the multi-layered Android platform using different programming languages (Java and C/C++), and the complex, event-driven execution flow of Android apps that complicates tracking, especially across these language barriers. Our system, DryJIN, addresses this by effectively tracking information flow within and across both Java and native modules. Utilizing symbolic execution for native code data flows and integrating it with Java data flows, DryJIN enhances existing static analysis techniques (Argus-SAF, JuCify, and FlowDroid) to cover previously unaddressed information flow patterns. We validated DryJIN ’s effectiveness through a comprehensive evaluation on over 168k apps, including malware and real-world apps, demonstrating its superiority over current state-of-the-art methods. 
    more » « less
  4. Mobile privacy and security can be a collaborative process where individuals seek advice and help from their trusted communities. To support such collective privacy and security management, we developed a mobile app for Community Oversight of Privacy and Security ("CO-oPS") that allows community members to review one another’s apps installed and permissions granted to provide feedback. We conducted a four-week-long field study with 22 communities (101 participants) of friends, families, or co-workers who installed the CO-oPS app on their phones. Measures of transparency, trust, and awareness of one another’s mobile privacy and security behaviors, along with individual and community participation in mobile privacy and security co-management, increased from pre- to post-study. Interview findings confirmed that the app features supported collective considerations of apps and permissions. However, participants expressed a range of concerns regarding having community members with different levels of technical expertise and knowledge regarding mobile privacy and security that can impact motivation to participate and perform oversight. Our study demonstrates the potential and challenges of community oversight mechanisms to support communities to co-manage mobile privacy and security. 
    more » « less
  5. It is commonly assumed that the availability of “free” mobile apps comes at the cost of consumer privacy, and that paying for apps could offer consumers protection from behavioral advertising and long-term tracking. This work empirically evaluates the validity of this assumption by investigating the degree to which “free” apps and their paid premium versions differ in their bundled code, their declared permissions, and their data collection behaviors and privacy practices. We compare pairs of free and paid apps using a combination of static and dynamic analysis. We also examine the differences in the privacy policies within pairs. We rely on static analysis to determine the requested permissions and third-party SDKs in each app; we use dynamic analysis to detect sensitive data collected by remote services at the network traffic level; and we compare text versions of privacy policies to identify differences in the disclosure of data collection behaviors. In total, we analyzed 1,505 pairs of free Android apps and their paid counterparts, with free apps randomly drawn from the Google Play Store’s category-level top charts. Our results show that over our corpus of free and paid pairs, there is no clear evidence that paying for an app will guarantee protection from extensive data collection. Specifically, 48% of the paid versions reused all of the same third-party libraries as their free versions, while 56% of the paid versions inherited all of the free versions’ Android permissions to access sensitive device resources (when considering free apps that include at least one third-party library and request at least one Android permission). Additionally, our dynamic analysis reveals that 38% of the paid apps exhibit all of the same data collection and transmission behaviors as their free counterparts. Our exploration of privacy policies reveals that only 45% of the pairs provide a privacy policy of some sort, and less than 1% of the pairs overall have policies that differ between free and paid versions. 
    more » « less