skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks
In 1943, McCulloch and Pitts introduced a discrete recurrent neural network as a model for computation in brains. The work inspired breakthroughs such as the first computer design and the theory of finite automata. We focus on learning in Hopfield networks, a special case with symmetric weights and fixed-point attractor dynamics. Specifically, we explore minimum energy flow (MEF) as a scalable convex objective for determining network parameters. We catalog various properties of MEF, such as biological plausibility, and then compare to classical approaches in the theory of learning. Trained Hopfield networks can perform unsupervised clustering and define novel error-correcting coding schemes. They also efficiently find hidden structures (cliques) in graph theory. We extend this known connection from graphs to hypergraphs and discover n-node networks with robust storage of 2Ω(n1−ϵ) memories for any ϵ>0. In the case of graphs, we also determine a critical ratio of training samples at which networks generalize completely.  more » « less
Award ID(s):
1803547
PAR ID:
10470512
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Entropy
Volume:
23
Issue:
11
ISSN:
1099-4300
Page Range / eLocation ID:
1494
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work explores the process of adapting the segmented attractor network to a lifelong learning setting. Taking inspirations from Hopfield networks and content-addressable memory, the segmented attractor network is a powerful tool for associative memory applications. The network's performance as an associative memory is analyzed using multiple metrics. In addition to the network's general hit rate, its capability to recall unique memories and their frequency is also evaluated with respect to time. Finally, additional learning techniques are implemented to enhance the network's recall capacity in the application of lifelong learning. These learning techniques are based on human cognitive functions such as memory consolidation, prediction, and forgetting. 
    more » « less
  2. Martelli, Pier Luigi (Ed.)
    Abstract MotivationAccurately representing biological networks in a low-dimensional space, also known as network embedding, is a critical step in network-based machine learning and is carried out widely using node2vec, an unsupervised method based on biased random walks. However, while many networks, including functional gene interaction networks, are dense, weighted graphs, node2vec is fundamentally limited in its ability to use edge weights during the biased random walk generation process, thus under-using all the information in the network. ResultsHere, we present node2vec+, a natural extension of node2vec that accounts for edge weights when calculating walk biases and reduces to node2vec in the cases of unweighted graphs or unbiased walks. Using two synthetic datasets, we empirically show that node2vec+ is more robust to additive noise than node2vec in weighted graphs. Then, using genome-scale functional gene networks to solve a wide range of gene function and disease prediction tasks, we demonstrate the superior performance of node2vec+ over node2vec in the case of weighted graphs. Notably, due to the limited amount of training data in the gene classification tasks, graph neural networks such as GCN and GraphSAGE are outperformed by both node2vec and node2vec+. Availability and implementationThe data and code are available on GitHub at https://github.com/krishnanlab/node2vecplus_benchmarks. All additional data underlying this article are available on Zenodo at https://doi.org/10.5281/zenodo.7007164. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  3. In this paper we develop a novel mathematical formalism for the modeling ofneural information networks endowed with additional structure in the form ofassignments of resources, either computational or metabolic or informational.The starting point for this construction is the notion of summing functors andof Segal's Gamma-spaces in homotopy theory. The main results in this paperinclude functorial assignments of concurrent/distributed computingarchitectures and associated binary codes to networks and their subsystems, acategorical form of the Hopfield network dynamics, which recovers the usualHopfield equations when applied to a suitable category of weighted codes, afunctorial assignment to networks of corresponding information structures andinformation cohomology, and a cohomological version of integrated information. 
    more » « less
  4. We prove several hardness results for training depth-2 neural networks with the ReLU activation function; these networks are simply weighted sums (that may include negative coefficients) of ReLUs. Our goal is to output a depth-2 neural network that minimizes the square loss with respect to a given training set. We prove that this problem is NP-hard already for a network with a single ReLU. We also prove NP-hardness for outputting a weighted sum of k ReLUs minimizing the squared error (for k>1) even in the realizable setting (i.e., when the labels are consistent with an unknown depth-2 ReLU network). We are also able to obtain lower bounds on the running time in terms of the desired additive error ϵ. To obtain our lower bounds, we use the Gap Exponential Time Hypothesis (Gap-ETH) as well as a new hypothesis regarding the hardness of approximating the well known Densest k-Subgraph problem in subexponential time (these hypotheses are used separately in proving different lower bounds). For example, we prove that under reasonable hardness assumptions, any proper learning algorithm for finding the best fitting ReLU must run in time exponential in (1/epsilon)^2. Together with a previous work regarding improperly learning a ReLU (Goel et al., COLT'17), this implies the first separation between proper and improper algorithms for learning a ReLU. We also study the problem of properly learning a depth-2 network of ReLUs with bounded weights giving new (worst-case) upper bounds on the running time needed to learn such networks both in the realizable and agnostic settings. Our upper bounds on the running time essentially matches our lower bounds in terms of the dependency on epsilon. 
    more » « less
  5. Regulatory networks depict promoting or inhibiting interactions between molecules in a biochemical system. We introduce a category-theoretic formalism for regulatory networks, using signed graphs to model the networks and signed functors to describe occurrences of one network in another, especially occurrences of network motifs. With this foundation, we establish functorial mappings between regulatory networks and other mathematical models in biochemistry. We construct a functor from reaction networks, modeled as Petri nets with signed links, to regulatory networks, enabling us to precisely define when a reaction network could be a physical mechanism underlying a regulatory network. Turning to quantitative models, we associate a regulatory network with a Lotka-Volterra system of differential equations, defining a functor from the category of signed graphs to a category of parameterized dynamical systems. We extend this result from closed to open systems, demonstrating that Lotka-Volterra dynamics respects not only inclusions and collapsings of regulatory networks, but also the process of building up complex regulatory networks by gluing together simpler pieces. Formally, we use the theory of structured cospans to produce a lax double functor from the double category of open signed graphs to that of open parameterized dynamical systems. Throughout the paper, we ground the categorical formalism in examples inspired by systems biology. 
    more » « less