skip to main content


Title: Identifying crustal contributions in the Patagonian Chon Aike Silicic Large Igneous Province
Abstract

The volcanic rocks of the Chon Aike Silicic Large Igneous Province (CASP) are recognized as magmas dominantly produced by crustal anatexis. Investigating the zircon of the CASP provides an opportunity to gain further insight into geochemical and isotopic differences of the potential magmatic sources (i.e., crust versus mantle), to identify crustal reservoirs that contributed to the felsic magmas during anatexis, and to quantify the contributions of the respective sources. We present a combined zircon oxygen and hafnium isotope and trace element dataset for 16 volcanic units of the two youngest volcanic phases in Patagonia, dated here with LA-ICP-MS U–Pb geochronology at ca. 148–153 Ma (El Quemado Complex, EQC) and ca. 159 Ma (western Chon Aike Formation, WCA). The EQC zircon have18O-enriched values (δ18O from 7 to 9.5‰) with correspondingly negative initial εHf values (− 2.0 to − 8.0). The WCA zircon have δ18O values between 6 and 7‰ and εHf values ranging between − 4.0 and + 1.5. Binary δ18O-εHf mixing models require an average of 70 and 60% melt derived from partial melting of isotopically distinct metasedimentary basements for the EQC and WCA, respectively. Zircon trace element compositions are consistent with anatexis of sedimentary protoliths derived from LIL-depleted upper continental crustal sources. The overlap between a high heat flux environment (i.e., widespread extension and lithospheric thinning) during supercontinental breakup and a fertile metasedimentary crust was key in producing voluminous felsic volcanism via anatexis following the injection and emplacement of basaltic magmas into the lower crust.

 
more » « less
NSF-PAR ID:
10470550
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Contributions to Mineralogy and Petrology
Volume:
178
Issue:
11
ISSN:
0010-7999
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Continental flood basalts are more prone to compositional modification from passage through thicker and (or) more felsic crust in comparison to their oceanic counterparts. The Steens Basalt in southeast Oregon (~17 Ma) is among the oldest and most mafic members of the Columbia River Basalt Group and provides a record of the early stages of flood basalt volcanism. We evaluate the balance of mantle sources in time during the onset of Columbia River Basalt Group magmatism and assess the effect of crustal passage using stratigraphically controlled Sr, Nd, Pb, Hf, Os, and O isotopic compositions, as well as whole rock major and trace element data.

    Mixing models indicate that depleted and enriched mantle sources identified by previous workers contribute in varying proportions during the life of the magmatic system, with the greatest contribution by depleted mantle when eruption rate and presumed intrusion rate increase. During waxing, enrichment of δ18O in some flows signals cryptic deep fractionation of abundant clinopyroxene followed by shallow fractionation of olivine ± clinopyroxene ± plagioclase. Os concentrations are among the highest worldwide at a given MgO (0.29–0.86 ppb at 6.0 to 10.9 wt.%). We argue that high Os results from scavenging of sulfides by recharging magmas passing through earlier crystallized magmas. Elevated87Sr/86Sr in the latest stage supports modest assimilation of partial melts from mafic accreted terranes, facilitated by thermal priming of crust by persistent magmatism. This work provides a more detailed schematic view of the Steens Basalt magmatic system, from mantle origin through crustal staging.

     
    more » « less
  2. Granitic rocks, interpreted to be related to crustal melting, were emplaced into regions of thickened crust in southern Arizona during the Laramide orogeny (80–40 Ma). Laramide-age anatectic rocks are exposed as plutons, sills, and dike networks that are commonly found in the exhumed footwalls of metamorphic core complexes. This study investigates newly discovered exposures of granodioritic–leucogranitic rocks from three intrusive phases in the footwall of the Pinaleño–Jackson Mountain metamorphic core complex of southeastern Arizona, called the Relleno suite. Zircon U–Pb geochronology indicates that the suite was emplaced from 58 to 52 Ma. Zircon Lu/Hf isotope geochemistry, whole-rock Sr and Nd isotope geochemistry, and mineral O isotope geochemistry were used to investigate the source of these rocks and evaluate whether they are related to crustal anatexis. Average zircon εHf(t) values of the suite range from −4.7 to −7.9, whole-rock εNd(i) and 87Sr/86Sr(i) values range from −9.4 to −11.8 and 0.7064 to 0.7094 respectively, and quartz δ18OVSMOW values range from 6.8 to 9.4 ‰. Isotopic and geochemical data of these rocks are consistent with derivation from and assimilation of intermediate–mafic (meta)igneous rocks, at deep crustal levels, and are supported by thermodynamic melt models of Proterozoic igneous rocks equivalent to those exposed in the Pinaleño Mountains. In comparison with other Laramide-age anatectic granites in SE Arizona, those exposed in the Pinaleño Mountains are temporally similar but present compositional and isotopic differences that reflect melting and assimilation of different lithologies, producing distinct mineralogical and isotopic characteristics. The results suggest that crustal melting during this interval was not limited to metasedimentary protoliths and may have affected large portions of the deep crust. The early Paleogene Relleno suite in the Pinaleño Mountains strengthens the relationship between crustal melting and regions of thickened crust associated with the Sevier and Laramide orogenies. 
    more » « less
  3. Abstract

    Iceland's oldest silicic rocks provide unique insight into the island's early crustal evolution. We present new zircon U‐Pb ages bolstered with zircon trace element and isotopic compositions, and whole rock Nd, Hf, and Pb isotope compositions, from three silicic magmatic centers—Hrafnsfjörður, Árnes, and Kaldalón—to understand the petrogenesis of large silicic volcanic centers in the northern Westfjords, Iceland. Our data confirm Hrafnsfjörður as the oldest known central volcano in Iceland (∼14 Ma) and establish an older age for Árnes (∼13 Ma) than previously estimated. We also report the first U‐Pb zircon dates from Kaldalón (∼13.5 Ma). Zircon oxygen isotope compositions range from δ18O∼+2 to +4‰ and indicate involvement of a low‐18O component in their source magmas. Hrafnsfjörður zircon Hf (mean sampleεHf∼ +15.3–16.0) and whole rock Hf and Nd (εHf = +14.5 to +15;εNd = +7.9 to +8.1) isotopic compositions are more radiogenic than those from Árnes (zircon sampleεHf∼ +11.8–13; whole rockεHf = +12.8 to +15.1;εNd = +7.3 to +7.7), but Hrafnsfjörður whole rock Pb isotope compositions (208/204Pb = 37.95–37.96;206/204Pb = 18.33–18.35) are less radiogenic than those from Árnes (208/204Pb = 38.34–38.48;206/204Pb = 18.64–18.78). Kaldalón has zircon Hf isotope compositions ofεHf∼+14.8 and 15.5 (sample means). These age and isotopic differences suggest that interaction of rift and plume, and thus the geodynamic evolution of the Westfjords, is complex. Isotopic compositions of Hrafnsfjörður and Árnes support involvement of an enriched mantle (EM)‐like mantle component associated with a pulsing plume that resulted in variable spreading rates and magma fluxes and highlight the heterogeneity of the Icelandic mantle.

     
    more » « less
  4. Abstract

    Constraining the lithological diversity and tectonics of the earliest Earth is critical to understanding our planet’s evolution. Here we use detrital Jack Hills zircon (3.7 − 4.2 Ga) analyses coupled with new experimental partitioning data to model the silica content, Si+O isotopic composition, and trace element contents of their parent melts. Comparing our derived Jack Hills zircons’ parent melt Si+O isotopic compositions (−1.92 ≤ δ30SiNBS28 ≤ 0.53 ‰; 5.23 ≤ δ18OVSMOW ≤ 9.00 ‰) to younger crustal lithologies, we conclude that the chemistry of the parent melts was influenced by the assimilation of terrigenous sediments, serpentinites, cherts, and silicified basalts, followed by igneous differentiation, leading to the formation of intermediate to felsic melts in the early Earth. Trace element measurements also show that the formational regime had an arc-like chemistry, implying the presence of mobile-lid tectonics in the Hadean. Finally, we propose that these continental-crust forming processes operated uniformly from 4.2 to at least 3.7 Ga.

     
    more » « less
  5. PhD Dissertation Abstract: The imposing andesite stratovolcano is the characteristic expression of subduction zone magmatism, posing hazards to coastal populations and bearing insight into deep Earth processes. On a map of a typical volcanic arc, one can easily distinguish the approximately linear alignment and regular spacing of these major edifices that stand out from a diffuse distribution of mafic volcanoes (e.g. the Quaternary Cascades; Hildreth, 2007). The andesitic composite volcanoes have a reputation for being complex, open systems: crystal zoning “stratigraphies,” diverse crystal cargoes including antecrysts or xenocrysts, quenched magmatic inclusions, and variations in isotopic signatures are among the many lines of evidence that these systems involve a variety of igneous processes and melt sources. To investigate the development and evolution of such transcrustal magma factories, I have conducted a detailed temporal, spatial, and geochemical characterization of a long-lived arc volcanic center in the southern Washington Cascades, the Goat Rocks volcanic complex. Results from ⁴⁰Ar/³⁹Ar and U/Pb geochronology constrain the lifespan of the Goat Rocks volcanic complex from ~3.1 Ma to ~100 ka. During this time, four major composite volcanoes were built (as well as several smaller volcanoes). From oldest to youngest, these are Tieton Peak, Bear Creek Mountain, Lake Creek volcano, and Old Snowy Mountain. Four volcanic stages are defined based on the lifespans of these centers and distinct compositional changes that occur from one to the next: Tieton Peak stage (3.1-2.6 Ma), Bear Creek Mountain stage (1.6-1.1 Ma), Lake Creek stage (1.1 Ma to 456 ka), and Old Snowy Mountain stage (440 ka to 115 ka). Two lava flow remnants also have ages in the interim between Tieton Peak stage and Bear Creek Mountain stage (2.3 Ma and 2.1 Ma), and their sources are not yet identified. The ages of the Bear Creek Mountain and Lake Creek stages in fact overlap, and the gap between Lake Creek stage and Old Snowy Mountain stage is only on the order of 10⁴ years. Based on supporting compositional evidence, the Bear Creek Mountain, Lake Creek, and Old Snowy Mountain stage volcanoes are considered to be the migrating surface expressions of a continuous magmatic system that was active over at least ~1.5 million years. It remains uncertain whether the gaps between the Tieton Peak stage, scattered early Pleistocene andesites, and Bear Creek Mountain stage are due to incomplete exposure/sampling or real quiescent periods earlier in the development of the Goat Rocks volcanic complex. Throughout the construction of the andesitic complex, mafic volcanoes were active on its periphery. These include the Miriam Creek volcano (~3.6-3.1 Ma), Devils Washbasin volcano (3.0-2.7 Ma), Hogback Mountain (1.1 Ma – 891 ka), Lakeview Mountain (194 ka), and Walupt Lake volcano (65 ka). Two basalt and basaltic andesite units (Qob₁ and Qob₂, 1.4 and 1.3 Ma; Hammond, 2017) also erupted from the Goat Rocks area, likely an older incarnation of Hogback Mountain. The suite of mafic magmas erupted in this region are all calcalkaline basalt (or basaltic andesite; CAB), but two compositional groups emerge from the trace element and isotopic data. Group 1 is LILE and LREE-enriched, with higher ⁸⁷Sr/⁸⁶Sr isotopes, and includes compositions from Devils Washbasin, Lower Hogback Mountain, and Lakeview Mountain. Group 2 is less enriched in LILE and LREE and lower in ⁸⁷Sr/⁸⁶Sr, and includes the compositions of Miriam Creek, Qob1, Upper Hogback Mountain, Walupt Lake, and Coleman Weedpatch. The two groups are recurrent through time and with no geographic distinction; in fact, both types were tapped by the Hogback Mountain volcano. Together both of these groups, alongside CABs from Mount Adams and various basalts from Mount St. Helens, form a compositional array between the basalts of the High Cascades and the intraplate-type basalts (IPB) of Mount Adams and Simcoe volcanic field. These results lead to three conclusions. 1) Variably subduction-modified mantle is distributed across the region, perhaps either as stratified layers or a web-like network of fluid pathways amongst less metasomatized mantle. 2) Transitional compositions between the IPBs and typical “High Cascades” CAB/HAOT signature suggest a broader influence of the mantle domain that feeds IPBs—if asthenospheric mantle through a slab window, as suggested by Mullen et al. (2017), then perhaps it bleeds in smaller quantities over a broader area. This compositional trend solidifies the interpretation of the southern Washington Cascades as a unique and coherent “segment” of the arc (the Washington segment of Pitcher and Kent, 2019). 3) The recurrence of variable mafic magma types through time, and with no geographic boundaries, indicates that the compositional evolution of the Goat Rocks volcanic complex was not likely driven by a change in mafic input. Indeed, the Sr, Nd, Hf, and Pb isotope ratios of the intermediate to felsic suite are closely aligned with the local basalts and suggest a limited role of crustal assimilation. Importantly, several mineral thermometers (zircon, ilmenite-magnetite pairs, and amphibole) align in recording higher crystallization temperatures in Bear Creek Mountain to early Lake Creek time, a cooling trend through the Lake Creek stage, and a more diverse range of temperatures in the transition to Old Snowy Mountain stage. Thus, it is suggested that the compositional evolution at Goat Rocks represents a thermal cycle of waxing and waning magmatic flux: where the period of Bear Creek Mountain to early Lake Creek volcanism was the climactic phase of a vertically extensive magma homogenization factory, then the system waned and cooled, ultimately losing its ability to filter, homogenize, and enrich magmas. 
    more » « less