skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The 3.1 Ma to 100 ka evolution of the Goat Rocks Volcanic Complex: Persistence and evolution of magmatism at a long-lived major andesite locus on the Cascades Arc
PhD Dissertation Abstract: The imposing andesite stratovolcano is the characteristic expression of subduction zone magmatism, posing hazards to coastal populations and bearing insight into deep Earth processes. On a map of a typical volcanic arc, one can easily distinguish the approximately linear alignment and regular spacing of these major edifices that stand out from a diffuse distribution of mafic volcanoes (e.g. the Quaternary Cascades; Hildreth, 2007). The andesitic composite volcanoes have a reputation for being complex, open systems: crystal zoning “stratigraphies,” diverse crystal cargoes including antecrysts or xenocrysts, quenched magmatic inclusions, and variations in isotopic signatures are among the many lines of evidence that these systems involve a variety of igneous processes and melt sources. To investigate the development and evolution of such transcrustal magma factories, I have conducted a detailed temporal, spatial, and geochemical characterization of a long-lived arc volcanic center in the southern Washington Cascades, the Goat Rocks volcanic complex. Results from ⁴⁰Ar/³⁹Ar and U/Pb geochronology constrain the lifespan of the Goat Rocks volcanic complex from ~3.1 Ma to ~100 ka. During this time, four major composite volcanoes were built (as well as several smaller volcanoes). From oldest to youngest, these are Tieton Peak, Bear Creek Mountain, Lake Creek volcano, and Old Snowy Mountain. Four volcanic stages are defined based on the lifespans of these centers and distinct compositional changes that occur from one to the next: Tieton Peak stage (3.1-2.6 Ma), Bear Creek Mountain stage (1.6-1.1 Ma), Lake Creek stage (1.1 Ma to 456 ka), and Old Snowy Mountain stage (440 ka to 115 ka). Two lava flow remnants also have ages in the interim between Tieton Peak stage and Bear Creek Mountain stage (2.3 Ma and 2.1 Ma), and their sources are not yet identified. The ages of the Bear Creek Mountain and Lake Creek stages in fact overlap, and the gap between Lake Creek stage and Old Snowy Mountain stage is only on the order of 10⁴ years. Based on supporting compositional evidence, the Bear Creek Mountain, Lake Creek, and Old Snowy Mountain stage volcanoes are considered to be the migrating surface expressions of a continuous magmatic system that was active over at least ~1.5 million years. It remains uncertain whether the gaps between the Tieton Peak stage, scattered early Pleistocene andesites, and Bear Creek Mountain stage are due to incomplete exposure/sampling or real quiescent periods earlier in the development of the Goat Rocks volcanic complex. Throughout the construction of the andesitic complex, mafic volcanoes were active on its periphery. These include the Miriam Creek volcano (~3.6-3.1 Ma), Devils Washbasin volcano (3.0-2.7 Ma), Hogback Mountain (1.1 Ma – 891 ka), Lakeview Mountain (194 ka), and Walupt Lake volcano (65 ka). Two basalt and basaltic andesite units (Qob₁ and Qob₂, 1.4 and 1.3 Ma; Hammond, 2017) also erupted from the Goat Rocks area, likely an older incarnation of Hogback Mountain. The suite of mafic magmas erupted in this region are all calcalkaline basalt (or basaltic andesite; CAB), but two compositional groups emerge from the trace element and isotopic data. Group 1 is LILE and LREE-enriched, with higher ⁸⁷Sr/⁸⁶Sr isotopes, and includes compositions from Devils Washbasin, Lower Hogback Mountain, and Lakeview Mountain. Group 2 is less enriched in LILE and LREE and lower in ⁸⁷Sr/⁸⁶Sr, and includes the compositions of Miriam Creek, Qob1, Upper Hogback Mountain, Walupt Lake, and Coleman Weedpatch. The two groups are recurrent through time and with no geographic distinction; in fact, both types were tapped by the Hogback Mountain volcano. Together both of these groups, alongside CABs from Mount Adams and various basalts from Mount St. Helens, form a compositional array between the basalts of the High Cascades and the intraplate-type basalts (IPB) of Mount Adams and Simcoe volcanic field. These results lead to three conclusions. 1) Variably subduction-modified mantle is distributed across the region, perhaps either as stratified layers or a web-like network of fluid pathways amongst less metasomatized mantle. 2) Transitional compositions between the IPBs and typical “High Cascades” CAB/HAOT signature suggest a broader influence of the mantle domain that feeds IPBs—if asthenospheric mantle through a slab window, as suggested by Mullen et al. (2017), then perhaps it bleeds in smaller quantities over a broader area. This compositional trend solidifies the interpretation of the southern Washington Cascades as a unique and coherent “segment” of the arc (the Washington segment of Pitcher and Kent, 2019). 3) The recurrence of variable mafic magma types through time, and with no geographic boundaries, indicates that the compositional evolution of the Goat Rocks volcanic complex was not likely driven by a change in mafic input. Indeed, the Sr, Nd, Hf, and Pb isotope ratios of the intermediate to felsic suite are closely aligned with the local basalts and suggest a limited role of crustal assimilation. Importantly, several mineral thermometers (zircon, ilmenite-magnetite pairs, and amphibole) align in recording higher crystallization temperatures in Bear Creek Mountain to early Lake Creek time, a cooling trend through the Lake Creek stage, and a more diverse range of temperatures in the transition to Old Snowy Mountain stage. Thus, it is suggested that the compositional evolution at Goat Rocks represents a thermal cycle of waxing and waning magmatic flux: where the period of Bear Creek Mountain to early Lake Creek volcanism was the climactic phase of a vertically extensive magma homogenization factory, then the system waned and cooled, ultimately losing its ability to filter, homogenize, and enrich magmas.  more » « less
Award ID(s):
1939347
PAR ID:
10337346
Author(s) / Creator(s):
Date Published:
Journal Name:
Theses and dissertations Oregon State University
ISSN:
0882-5114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Contributions of heat and/or mass from mafic magmas are commonly invoked in models of voluminous granodiorite and andesite generation in magmatic and volcanic arcs worldwide. However, mafic intrusions are a volumetrically minor component in most arc batholiths. This is the case in the Sierra Nevada batholith, California, USA, where gabbro and diorite plutons are smaller and less abundant than the granitoid suites that make up the bulk of the batholith. Here, we constrain the timing and geochemistry of mafic intrusions in the Sierra Nevada batholith to assess the role of these compositions in arc batholith construction. Previous detailed studies on a limited number of mafic intrusions demonstrate that they formed penecontemporaneously with the felsic batholith, but there is a need for a broader survey of mafic plutons using modern geochronological techniques. New U-Pb zircon ages for 13 gabbro to diorite plutons and geochemistry from 17 mafic intrusions in the eastern Sierra Nevada batholith document two main episodes of mafic magmatism in the eastern Sierra Nevada batholith, from 168 Ma to 145 Ma and from 100 Ma to 89 Ma. These episodes overlap with the ages of granitoid plutons in the eastern Sierra Nevada batholith, including the Late Jurassic Palisade Crest and Late Cretaceous John Muir intrusive suites, in addition to other felsic plutons dated in the eastern Sierra Nevada batholith. Non-primitive mineral compositions in the mafic bodies indicate that their parental magmas are the evolved products of mantle-derived basalts that first differentiated in the lower crust prior to ascent and crystallization in the upper crust. The presence of rocks with cumulate textures, as well as a wide range of bulk-rock compositions (SiO2 wt% 38−64, Mg# 39−74), show that magmatic differentiation continued within each mafic body after intrusion into the upper crust. Sr/Y ratios in melt-like (i.e., non-cumulate) mafic samples suggest that the crustal thickness of the Sierra Nevada batholith was roughly 30 km in the Early Jurassic and increased to ∼44 km by the Late Cretaceous. Concomitant intrusion of mafic melts along with voluminous granitoid plutons supports mantle melting as a major contributor of heat and magmatic volumes to the crust during construction of the eastern Sierra Nevada batholith. 
    more » « less
  2. null (Ed.)
    Oceanic island basalts are targeted for geochemical study because they provide a direct window into mantle composition and a wealth of information on the dynamics and timescales associated with Earth mixing. Previous studies mainly focused on the shield volcanic stage of oceanic islands and the more fusible, enriched mantle components that are easily distinguished in those basalts. Mantle depleted compositions are typically more difficult to resolve unless large amounts of this material participated in mantle melting (e.g., mid-ocean ridges), or unique processes allow for their compositions to be erupted undiluted, such as very small degrees of melting of a source with minimal fusible enriched components (e.g., rejuvenated basalts) or as xenoliths (e.g., abyssal peridotites). Mantle depleted components, defined here as material with low time-integrated Rb/Sr (low 87Sr/86Sr) and high time-integrated Sm/Nd and Lu/Hf ratios (high 143Nd/144Nd and 176Hf/177Hf) relative to primitive mantle, derive from a potentially very large volume reservoir (up to 80% of the mantle), and therefore need adequate characterization in order estimate the composition of the Earth and mantle-derived melts. This review focuses on mantle depleted compositions in oceanic island basalts using the Hawaiian-Emperor chain as a case study. The Hawaiian-Emperor chain is the ∼6000 km long geological record of the deeply sourced Hawaiian mantle plume, active for>81 Myr. Hawaiian volcanism evolves through four volcanic stages as a volcano traverses the Hawaiian plume: alkalic preshield, tholeiitic shield (80–90% volcano volume), alkalic postshield (∼1%), and silica undersaturated rejuvenated (< 0.1%). We report Pb-Sr-Nd-Hf isotope compositions and trace element concentrations of three rejuvenated Northwest Hawaiian Ridge basalts and compare them to an exhaustive compiled dataset of basalts from the Hawaiian Islands to the Emperor Seamounts. The Northwest Hawaiian Ridge (NWHR) includes 51 volcanoes spanning ∼42 m.y. between the bend in the Hawaiian-Emperor chain and the Hawaiian Islands where there is no high-precision isotopic data published on the rejuvenated-stage over ∼47% of the chain. NWHR and Hawaiian Island rejuvenated basalts are geochemically similar, indicating a consistent source for rejuvenated volcanism over ∼12.5 million years. In contrast, shield-stage basalts from the oldest Emperor Seamounts are more depleted in isotopic composition (i.e., higher 176Hf/177Hf, and 143Nd/144Nd with lower 87Sr/86Sr and 208Pb*/206Pb*) and trace element concentrations (i.e., much lower concentrations of highly incompatible elements) than all other depleted Hawaiian basalts younger than the bend, including NWHR rejuvenated basalts. The strongly depleted source for the oldest Emperor Seamounts (> 70 Ma) was likely related to interaction with the Kula-Pacific-Izanagi mid-ocean ridge spreading system active near the Hawaiian plume in the Late Cretaceous. In contrast, the incompatible trace element ratios of NWHR rejuvenated basalts require a distinct source in the Hawaiian mantle plume that was imprinted by ancient (> 1 Ga) partial melting, likely ancient recycled oceanic lithosphere. This review of the geochemistry of Hawaiian depleted components documents the need for the sampling of multiple distinctive depleted compositions, each preferentially melted during specific periods of Hawaiian plume activity. This suggests that the composition of depleted components can evolve during the lifetime of the mantle plume, as observed for enriched components in the Hawaiian mantle plume. Changes in the composition of depleted components are dominantly controlled by the upper mantle tectonic configurations at the time of eruption (i.e., proximity to a mid-ocean ridge), as this effect overwhelms the signal imparted by potentially sampling different lower mantle components through time. 
    more » « less
  3. Abstract Major- and trace-element data together with Nd and Sr isotopic compositions and 40Ar/39Ar age determinations were obtained for Late Cretaceous and younger volcanic rocks from north-central Colorado, USA, in the Southern Rocky Mountains to assess the sources of mantle-derived melts in a region underlain by thick (≥150 km) continental lithosphere. Trachybasalt to trachyandesite lava flows and volcanic cobbles of the Upper Cretaceous Windy Gap Volcanic Member of the Middle Park Formation have low εNd(t) values from −3.4 to −13, 87Sr/86Sr(t) from ~0.705 to ~0.707, high large ion lithophile element/high field strength element ratios, and low Ta/Th (≤0.2) values. These characteristics are consistent with the production of mafic melts during the Late Cretaceous to early Cenozoic Laramide orogeny through flux melting of asthenosphere above shallowly subducting and dehydrating oceanic lithosphere of the Farallon plate, followed by the interaction of these melts with preexisting, low εNd(t), continental lithospheric mantle during ascent. This scenario requires that asthenospheric melting occurred beneath continental lithosphere as thick as 200 km, in accordance with mantle xenoliths entrained in localized Devonian-age kimberlites. Such depths are consistent with the abundances of heavy rare earth elements (Yb, Sc) in the Laramide volcanic rocks, which require parental melts derived from garnet-bearing mantle source rocks. New 40Ar/39Ar ages from the Rabbit Ears and Elkhead Mountains volcanic fields confirm that mafic magmatism was reestablished in this region ca. 28 Ma after a hiatus of over 30 m.y. and that the locus of volcanism migrated to the west through time. These rocks have εNd(t) and 87Sr/86Sr(t) values equivalent to their older counterparts (−3.5 to −13 and 0.7038–0.7060, respectively), but they have higher average chondrite-normalized La/Yb values (~22 vs. ~10), and, for the Rabbit Ears volcanic field, higher and more variable Ta/Th values (0.29–0.43). The latter are general characteristics of all other post–40 Ma volcanic rocks in north-central Colorado for which literature data are available. Transitions from low to intermediate Ta/Th mafic volcanism occurred diachronously across southwest North America and are interpreted to have been a consequence of melting of continental lithospheric mantle previously metasomatized by aqueous fluids derived from the underthrusted Farallon plate. Melting occurred as remnants of the Farallon plate were removed and the continental lithospheric mantle was conductively heated by upwelling asthenosphere. A similar model can be applied to post–40 Ma magmatism in north-central Colorado, with periodic, east to west, removal of stranded remnants of the Farallon plate from the base of the continental lithospheric mantle accounting for the production, and western migration, of volcanism. The estimated depth of the lithosphere-asthenosphere boundary in north-central Colorado (~150 km) indicates that the lithosphere remains too thick to allow widespread melting of upwelling asthenosphere even after lithospheric thinning in the Cenozoic. The preservation of thick continental lithospheric mantle may account for the absence of oceanic-island basalt–like basaltic volcanism (high Ta/Th values of ~1 and εNd[t] > 0), in contrast to areas of southwest North America that experienced larger-magnitude extension and lithosphere thinning, where oceanic-island basalt–like late Cenozoic basalts are common. 
    more » « less
  4. Abstract In 2015 a geothermal exploration well was drilled on the island of Tutuila, American Samoa. The sample suite from the drill core provides 645 m of volcanic stratigraphy from a Samoan volcano, spanning 1.45 million years of volcanic history. In the Tutuila drill core, shield lavas with an EM2 (enriched mantle 2) signature are observed at depth, spanning 1.46 to 1.44 Ma. These are overlain by younger (1.35 to 1.17 Ma) shield lavas with a primordial “common” (focus zone) component interlayered with lavas that sample a depleted mantle component. Following ~1.15 Myr of volcanic quiescence, rejuvenated volcanism initiated at 24.3 ka and samples an EM1 (enriched mantle 1) component. The timing of the initiation of rejuvenated volcanism on Tutuila suggests that rejuvenated volcanism may be tectonically driven, as Samoan hotspot volcanoes approach the northern terminus of the Tonga Trench. This is consistent with a model where the timing of rejuvenated volcanism at Tutuila and at other Samoan volcanoes relates to their distance from the Tonga Trench. Notably, the Samoan rejuvenated lavas have EM1 isotopic compositions distinct from shield lavas that are geochemically similar to “petit spot” lavas erupted outboard of the Japan Trench and late stage lavas erupted at Christmas Island located outboard of the Sunda Trench. Therefore, like the Samoan rejuvenated lavas, petit spot volcanism in general appears to be related to tectonic uplift outboard of subduction zones, and existing geochemical data suggest that petit spots share similar EM1 isotopic signatures. 
    more » « less
  5. Volcanic rocks of the Sierra San Francisco (SSF), in northern Baja California Sur, Mexico, record post-subduction magmatism related to slab melting and slab window opening. The range is composed of andesitic and dacitic domes, mafic lavas, and volcaniclastic deposits (debris and block-and-ash-flow, lahar, and fluvial) that constitute the proximal to distal facies of a volcanic field with local eruptive ages that postdate the regional transition from subduction to transtension. Lowest observed volcanic units consist of interbedded and hydrothermally altered mafic lavas, tuff breccias, and andesite/dacite domes. These are overlain by volcaniclastic units and dacite domes that erupted between ~11-10 Ma. Volcaniclastic deposits comprise a section up to 800 m thick, locally flank and dip radially away from domes, and are likely associated with dome collapse. These deposits are unconformably overlain by a series of ~5.5-4.5 Ma Mg-enriched basaltic andesites (bajaites) that typically erupted along NNW-trending normal faults. Low interbedded mafic lavas are chemically similar to syn-subduction lavas (>15 Ma) SE of the SSF, suggesting a typical subduction supraslab mantle source during waning, late Miocene Farallon plate subduction. ~11-10 Ma dacite domes and debris flow blocks display an adakitic geochemical signature, implying an origin involving late Miocene foundering and melting of the edges of the subducted Farallon plate during the opening of a slab window after the 12.3 Ma transition from subduction to transtension. Adakitic rocks of the SSF and the Santa Clara volcanic field 60 km to the SW may constrain the E-W extent of the slab window. The ~5.5-4.5 Ma bajaites display enriched REE and trace element patterns, potentially resulting from the rise of enriched subslab mantle through the slab window and interaction with supraslab mantle, previously metasomatized by slab melts. Thermal pulses associated with Gulf of California rifting may have provided the heat to generate Mg-rich magmas which ascended along rift-related faults, precluding significant crustal contamination or fractionation, and allowing magmas to retain their primitive character. Further analysis will elucidate the timing of slab window development and the post-subduction mantle processes that drove the chemical evolution of SSF magmas. 
    more » « less