skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scattering Parameter Measurements of the Long Wavelength Array Antenna and Front End Electronics
Abstract We present recent 2-port vector network analyzer (VNA) measurements of the complete set of scattering parameters for the antenna used within the Long Wavelength Array (LWA) and the associated front end electronics (FEEs). Full scattering parameter measurements of the antenna yield not only the reflection coefficient for each polarization, S11 and S22, but also the coupling between polarizations, S12 and S21. These had been previously modeled using simulations, but direct measurements had not been obtained until now. The measurements are used to derive a frequency dependent impedance mismatch factor (IMF) which represents the fraction of power that is passed through the antenna–FEE interface and not reflected due to a mismatch between the impedance of the antenna and the impedance of the FEE. We also present results from a two-antenna experiment where each antenna is hooked up to a separate port on the VNA. This allows for cross–antenna coupling to be measured for all four possible polarization combinations. Finally, we apply the newly measured IMF and FEE forward gain corrections to LWA data to investigate how well they remove instrumental effects.  more » « less
Award ID(s):
1835400
PAR ID:
10470606
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
PASP
Date Published:
Journal Name:
Publications of the Astronomical Society of the Pacific
Volume:
135
Issue:
1046
ISSN:
0004-6280
Page Range / eLocation ID:
044501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is intended for full-duplex in-band applications using two mutually isolated antenna ports, with the CPW port on the same side of the substrate as the slot antenna and the microstrip port positioned orthogonally on the other side of the substrate. Those two ports can be used as transmit and receive ports in a radar transceiver, with a port isolation of 25 dB. Thanks to the bow-tie shape of the slots and an additional coupling region between the butterfly arms, there is more flexibility in simultaneous optimization of the resonant frequency and input impedance at both ports, avoiding the need for a complicated matching network that introduces the attenuation and increases antenna dimensions. The advantage of this design is demonstrated through the modeling of an eight-element dual-port linear array with an extremely simple feed network for high-gain biosensing applications. To validate the simulation results, prototypes of the proposed antenna were fabricated and tested. The measured operating band of the antennas spans from 2.35 GHz to 2.55 GHz, with reflection coefficients of less than—10 dB, a maximum gain of 8.5 dBi, and a front-to-back gain ratio that is greater than 15 dB, which is comparable with other published single dual-port slot antennas. This is the simplest proposed dual-port, dual-polarization antenna that enables straightforward scaling to other frequency bands. 
    more » « less
  2. null (Ed.)
    Reconfigurable antenna systems have gained much attention for potential use in the next generation wireless systems. However, conventional direction-of-arrival (DoA) estimation algorithms for antenna arrays cannot be used directly in reconfigurable antennas due to different design of the antennas. In this paper, we present an adjacent pattern power ratio (APPR) algorithm for two-port composite right/left-handed (CRLH) reconfigurable leaky-wave antennas (LWAs). Additionally, we compare the performances of the APPR algorithm and LWA-based MUSIC algorithms. We study how the computational complexity and the performance of the algorithms depend on number of selected radiation patterns. In addition, we evaluate the performance of the APPR and MUSIC algorithms with numerical simulations as well as with real world indoor measurements having both line-of-sight and non-line-of-sight components. Our performance evaluations show that the DoA estimates are in a considerably good agreement with the real DoAs, especially with the APPR algorithm. In summary, the APPR and MUSIC algorithms for DoA estimation along with the planar and compact LWA layout can be a valuable solution to enhance the performance of the wireless communication in the next generation systems. 
    more » « less
  3. This article presents the design of a planar MIMO (Multiple Inputs Multiple Outputs) antenna comprised of two sets orthogonally placed 1 × 12 linear antenna arrays for 5G millimeter wave (mmWave) applications. The arrays are made of probe-fed microstrip patch antenna elements on a 90 × 160 mm2 Rogers RT/Duroid 5880 grounded dielectric substrate. The antenna demonstrates S11 = −10 dB impedance bandwidth in the following 5G frequency band: 24.25–27.50 GHz. The scattering parameters of the antenna were computed by electromagnetic simulation tools, Ansys HFSS and CST Microwave Studio, and were further verified by the measured results of a fabricated prototype. To achieve a gain of 12 dBi or better over a scanning range of +/−45° from broadside, the Dolph-Tschebyscheff excitation weighting and optimum spacing are used. Different antenna parameters, such as correlation coefficient, port isolation, and 2D and 3D radiation patterns, are investigated to determine the effectiveness of this antenna for MIMO operation, which will be very useful for mmWave cellphone applications in 5G bands. 
    more » « less
  4. null (Ed.)
    Composite Right-/Left-Handed (CRLH) Leaky-Wave Antennas (LWAs) are a class of radiating elements characterized by an electronically steerable radiation pattern. The design is comprised of a cascade of CRLH unit cells populated with varactor diodes. By varying the voltage across the varactor diodes, the antenna can steer its directional beam from broadside to backward and forward end-fire directions. In this paper, we discuss the design and experimental analysis of a miniaturized CRLH Leaky-Wave Antenna for the 2.4 GHz WiFi band. The miniaturization is achieved by etching Complementary Split-Ring Resonator (CSRR) underneath each CRLH unit cell. As opposed to the conventional LWA designs, we take advantage of a LWA layout that does not require thin interdigital capacitors; thus we significantly reduce the PCB manufacturing constraints required to achieve size reduction. The experimental results were compared with a nonminiaturized prototype in order to evaluate the differences in impedance and radiation characteristics. The proposed antenna is a significant achievement because it will enable CRLH LWAs to be a viable technology not only for wireless access points, but also potentially for mobile devices. 
    more » « less
  5. A conformal wideband antenna is investigated and compared with its planar counterpart. First, a planar U-slot patch with about 43% fractional impedance bandwidth is designed. Then, it is mounted on a conformal cylindrical structure. It is observed that the fractional impedance bandwidth of the resulting conformal antenna increases to 50%, when it is bent along the H-plane. It is also found that the cross polarization discrimination of the antenna is improved. The effects of the arc angle and radius of the cylinder on the impedance bandwidth and radiation characteristics of the antenna are extensively studied. The conformal antenna was fabricated on a thin film of Kapton and tested. The measured and simulated results closely resembled each other. 
    more » « less