skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alternation emerges as a multi-modal strategy for turbulent odor navigation
Foraging mammals exhibit a familiar yet poorly characterized phenomenon, ‘alternation’, a pause to sniff in the air preceded by the animal rearing on its hind legs or raising its head. Rodents spontaneously alternate in the presence of airflow, suggesting that alternation serves an important role during plume-tracking. To test this hypothesis, we combine fully resolved simulations of turbulent odor transport and Bellman optimization methods for decision-making under partial observability. We show that an agent trained to minimize search time in a realistic odor plume exhibits extensive alternation together with the characteristic cast-and-surge behavior observed in insects. Alternation is linked with casting and occurs more frequently far downwind of the source, where the likelihood of detecting airborne cues is higher relative to ground cues. Casting and alternation emerge as complementary tools for effective exploration with sparse cues. A model based on marginal value theory captures the interplay between casting, surging, and alternation.  more » « less
Award ID(s):
1764269
PAR ID:
10470619
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In order to survive, animals often need to navigate a complex odor landscape where odors can exist in airborne plumes. Several odor plume properties change with distance from the odor source, providing potential navigational cues to searching animals. Here, we focus on odor intermittency, a temporal odor plume property that measures the fraction of time odor is above a threshold at a given point within the plume and decreases with increasing distance from the odor source. We sought to determine if mice can use changes in intermittency to locate an odor source. To do so, we trained mice on an intermittency discrimination task. We establish that mice can discriminate odor plume samples of low and high intermittency and that the neural responses in the olfactory bulb can account for task performance and support intermittency encoding. Modulation of sniffing, a behavioral parameter that is highly dynamic during odor-guided navigation, affects both behavioral outcome on the intermittency discrimination task and neural representation of intermittency. Together, this work demonstrates that intermittency is an odor plume property that can inform olfactory search and more broadly supports the notion that mammalian odor-based navigation can be guided by temporal odor plume properties. 
    more » « less
  2. In order to survive, animals often need to navigate a complex odor landscape where odors can exist in airborne plumes. Several odor plume properties change with distance from the odor source, providing potential navigational cues to searching animals. Here, we focus on odor intermittency, a temporal odor plume property that measures the fraction of time odor is present at a given point within the plume and decreases with increasing distance from the odor source. We sought to determine if mice are capable of using changes in intermittency to locate an odor source. To do so, we trained mice on an intermittency discrimination task. We establish that mice can discriminate odor plume samples of low and high intermittency and that the neural responses in the olfactory bulb can account for task performance and support intermittency encoding. Modulation of sniffing, a behavioral parameter that is highly dynamic during odor-guided navigation, affects both behavioral outcomes on the intermittency discrimination task as well as neural representation of intermittency. Together, this work demonstrates that intermittency is an odor plume property that can inform olfactory search and more broadly supports the notion that mammalian odor-based navigation can be guided by temporal odor plume properties. 
    more » « less
  3. Odor-guided navigation is fundamental to the survival and reproductive success of many flying insects. Despite its biological importance, the mechanics of how insects sense and interpret odor plumes in the presence of complex flow fields remain poorly understood. This study employs numerical simulations to investigate the influence of turbulence, wingbeat-induced flow, and Schmidt number on the structure and perception of odor plumes by flying insects. Using an in-house computational fluid dynamics solver based on the immersed-boundary method, we solve the three-dimensional Navier–Stokes equations to model the flow field. The solver is coupled with the equations of motion for passive flapping wings to emulate wingbeat-induced flow. The odor landscape is then determined by solving the odor advection–diffusion equation. By employing a synthetic isotropic turbulence generator, we introduce turbulence into the flow field to examine its impact on odor plume structures. Our findings reveal that both turbulence and wingbeat-induced flow substantially affect odor plume characteristics. Turbulence introduces fluctuations and perturbations in the plume, while wingbeat-induced flow draws the odorant closer to the insect’s antennae. Moreover, we demonstrate that the Schmidt number, which affects odorant diffusivity, plays a significant role in odor detectability. Specifically, at high Schmidt numbers, larger fluctuations in odor sensitivity are observed, which may be exploited by insects to differentiate between various odorant volatiles emanating from the same source. This study provides new insights into the complex interplay between fluid dynamics and sensory biology and behavior, enhancing our understanding of how flying insects successfully navigate using olfactory cues in turbulent environments. 
    more » « less
  4. Abstract Insects rely on their olfactory system to forage, prey, and mate. They can sense odorant plumes emitted from sources of their interests with their bilateral odorant antennae, and track down odor sources using their highly efficient flapping-wing mechanism. The odor-tracking process typically consists of two distinct behaviors: surging upwind at higher velocity and zigzagging crosswind at lower velocity. Despite extensive numerical and experimental studies on odor guided flight in insects, we have limited understandings on the effects of flight velocity on odor plume structure and its associated odor perception. In this study, a fully coupled three-way numerical solver is developed, which solves the 3D Navier-Stokes equations coupled with equations of motion for the passive flapping wings, and the odorant convection-diffusion equation. This numerical solver is applied to resolve the unsteady flow field and the odor plume transport for a fruit fly model at different flight velocities in terms of reduced frequency. Our results show that the odor plume structure and intensity are strong related to reduced frequency. At smaller reduced frequency (larger forward velocity), odor plume is pushed up during downstroke and draw back during upstroke. At larger reduced frequency (smaller forward velocity), the flapping wings induce a shield-like air flow around the antennae which may greatly increase the odor sampling range. Our finding may explain why flight velocity is important in odor guided flight. 
    more » « less
  5. Abstract To navigate towards a food source, animals frequently combine odor cues about source identity with wind direction cues about source location. Where and how these two cues are integrated to support navigation is unclear. Here we describe a pathway to theDrosophilafan-shaped body that encodes attractive odor and promotes upwind navigation. We show that neurons throughout this pathway encode odor, but not wind direction. Using connectomics, we identify fan-shaped body local neurons called h∆C that receive input from this odor pathway and a previously described wind pathway. We show that h∆C neurons exhibit odor-gated, wind direction-tuned activity, that sparse activation of h∆C neurons promotes navigation in a reproducible direction, and that h∆C activity is required for persistent upwind orientation during odor. Based on connectome data, we develop a computational model showing how h∆C activity can promote navigation towards a goal such as an upwind odor source. Our results suggest that odor and wind cues are processed by separate pathways and integrated within the fan-shaped body to support goal-directed navigation. 
    more » « less